zoukankan      html  css  js  c++  java
  • 张量和数据类型

    张量的阶和数据类型

    TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.张量可以在图中的节点之间流通.其实张量更代表的就是一种多位数组。

    在TensorFlow系统中,张量的维数来被描述为阶.但是张量的阶和矩阵的阶并不是同一个概念.张量的阶(有时是关于如顺序或度数或者是n维)是张量维数的一个数量描述.比如,下面的张量(使用Python中list定义的)就是2阶.

    t = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

    你可以认为一个二阶张量就是我们平常所说的矩阵,一阶张量可以认为是一个向量.

    数学实例Python例子
    0 纯量 (只有大小) s = 483
    1 向量 (大小和方向) v = [1.1, 2.2, 3.3]
    2 矩阵 (数据表) m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
    3 3阶张量 (数据立体) t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]]
    n n阶 (自己想想看) ....

    数据类型

    Tensors有一个数据类型属性.你可以为一个张量指定下列数据类型中的任意一个类型:

    数据类型Python 类型描述
    DT_FLOAT tf.float32 32 位浮点数.
    DT_DOUBLE tf.float64 64 位浮点数.
    DT_INT64 tf.int64 64 位有符号整型.
    DT_INT32 tf.int32 32 位有符号整型.
    DT_INT16 tf.int16 16 位有符号整型.
    DT_INT8 tf.int8 8 位有符号整型.
    DT_UINT8 tf.uint8 8 位无符号整型.
    DT_STRING tf.string 可变长度的字节数组.每一个张量元素都是一个字节数组.
    DT_BOOL tf.bool 布尔型.
    DT_COMPLEX64 tf.complex64 由两个32位浮点数组成的复数:实数和虚数.
    DT_QINT32 tf.qint32 用于量化Ops的32位有符号整型.
    DT_QINT8 tf.qint8 用于量化Ops的8位有符号整型.
    DT_QUINT8 tf.quint8 用于量化Ops的8位无符号整型.
  • 相关阅读:
    实验五
    实验一
    实验四
    实验三
    实验8 SQLite数据库操作
    实验7 BindService模拟通信
    实验6 在应用程序中播放音频和视频
    实验5 数独游戏界面设计
    实验4 颜色、字符串资源的使用
    实验五 存储管理实验
  • 原文地址:https://www.cnblogs.com/alexzhang92/p/10069377.html
Copyright © 2011-2022 走看看