模型接口建立
模型接口的建立
我们将模型接口都放在cifar_omdel.py文件当中,设计了四个函数,input()作为从cifar_data文件中数据的获取,inference()作为神经网络模型的建立,total_loss()计算模型的损失,train()来通过梯度下降训练减少损失
input代码
def input(): """ 获取输入数据 :return: image,label """ # 实例化 cfr = cifar_data.CifarRead() # 生成张量 image_batch, lab_batch = cfr.read_tfrecords() # 将目标值转换为one-hot编码格式 label = tf.one_hot(label_batch, depth=10, on_value=1.0) return image_batch, label, label_batch
inference代码
在这里使用的卷积神经网络模型与前面一致,需要修改图像的通道数以及经过两次卷积池化变换后的图像大小。
def inference(image_batch): """ 得到模型的输出 :return: 预测概率输出以及占位符 """ # 1、数据占位符建立 with tf.variable_scope("data"): # 样本标签值 # y_label = tf.placeholder(tf.float32, [None, 10]) # 样本特征值 # x = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH * IMAGE_DEPTH]) # 改变形状,以提供给卷积层使用 x_image = tf.reshape(image_batch, [-1, 32, 32, 3]) # 2、卷积池化第一层 with tf.variable_scope("conv1"): # 构建权重, 5*5, 3个输入通道,32个输出通道 w_conv1 = weight_variable([5, 5, 3, 32]) # 构建偏置, 个数位输出通道数 b_conv1 = bias_variable([32]) # 进行卷积,激活,指定滑动窗口,填充类型 y_relu1 = tf.nn.relu(tf.nn.conv2d(x_image, w_conv1, strides=[1, 1, 1, 1], padding="SAME") + b_conv1) y_conv1 = tf.nn.max_pool(y_relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # 3、卷积池化第二层 with tf.variable_scope("conv_pool2"): # 构建权重, 5*5, 一个输入通道,32个输出通道 w_conv2 = weight_variable([5, 5, 32, 64]) # 构建偏置, 个数位输出通道数 b_conv2 = bias_variable([64]) # 进行卷积,激活,指定滑动窗口,填充类型 y_relu2 = tf.nn.relu(tf.nn.conv2d(y_conv1, w_conv2, strides=[1, 1, 1, 1], padding="SAME") + b_conv2) y_conv2 = tf.nn.max_pool(y_relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # 4、全连接第一层 with tf.variable_scope("FC1"): # 构建权重,[7*7*64, 1024],根据前面的卷积池化后一步步计算的大小变换是32->16->8 w_fc1 = weight_variable([8 * 8 * 64, 1024]) # 构建偏置,个数位第一次全连接层输出个数 b_fc1 = bias_variable([1024]) y_reshape = tf.reshape(y_conv2, [-1, 8 * 8 * 64]) # 全连接结果激活 y_fc1 = tf.nn.relu(tf.matmul(y_reshape, w_fc1) + b_fc1) # 5、全连接第二层 with tf.variable_scope("FC2"): # droupout层 droup = tf.nn.dropout(y_fc1, 1.0) # 构建权重,[1024, 10] w_fc2 = weight_variable([1024, 10]) # 构建偏置 [10] b_fc2 = bias_variable([10]) # 最后的全连接层 y_logit = tf.matmul(droup, w_fc2) + b_fc2 return y_logit
total_loss代码
def total_loss(y_label, y_logit): """ 计算训练损失 :param y_label: 目标值 :param y_logit: 计算值 :return: 损失 """ with tf.variable_scope("loss"): # softmax回归,以及计算交叉损失熵 cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_label, logits=y_logit) # 计算损失平均值 loss = tf.reduce_mean(cross_entropy) return loss
train代码
def train(loss, y_label, y_logit, global_step): """ 训练数据得出准确率 :param loss: 损失大小 :return: """ with tf.variable_scope("train"): # 让学习率根据步伐,自动变换学习率,指定了每10步衰减基数为0.99,0.001为初始的学习率 lr = tf.train.exponential_decay(0.001, global_step, 10, 0.99, staircase=True) # 优化器 train_op = tf.train.GradientDescentOptimizer(lr).minimize(loss, global_step=global_step) # 计算准确率 equal_list = tf.equal(tf.argmax(y_logit, 1), tf.argmax(y_label, 1)) accuracy = tf.reduce_mean(tf.cast(equal_list, tf.float32)) return train_op, accuracy
完整代码
import tensorflow as tf import os import cifar_data # # from tensorflow.examples.tutorials.mnist import input_data IMAGE_HEIGHT = 32 IMAGE_WIDTH = 32 IMAGE_DEPTH = 3 # 按照指定形状构建权重变量 def weight_variable(shape): init = tf.truncated_normal(shape=shape, mean=0.0, stddev=1.0, dtype=tf.float32) weight = tf.Variable(init) return weight # 按照制定形状构建偏置变量 def bias_variable(shape): bias = tf.constant([1.0], shape=shape) return tf.Variable(bias) def inference(image_batch): """ 得到模型的输出 :return: 预测概率输出以及占位符 """ # 1、数据占位符建立 with tf.variable_scope("data"): # 样本标签值 # y_label = tf.placeholder(tf.float32, [None, 10]) # 样本特征值 # x = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH * IMAGE_DEPTH]) # 改变形状,以提供给卷积层使用 x_image = tf.reshape(image_batch, [-1, 32, 32, 3]) # 2、卷积池化第一层 with tf.variable_scope("conv1"): # 构建权重, 5*5, 3个输入通道,32个输出通道 w_conv1 = weight_variable([5, 5, 3, 32]) # 构建偏置, 个数位输出通道数 b_conv1 = bias_variable([32]) # 进行卷积,激活,指定滑动窗口,填充类型 y_relu1 = tf.nn.relu(tf.nn.conv2d(x_image, w_conv1, strides=[1, 1, 1, 1], padding="SAME") + b_conv1) y_conv1 = tf.nn.max_pool(y_relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # 3、卷积池化第二层 with tf.variable_scope("conv_pool2"): # 构建权重, 5*5, 一个输入通道,32个输出通道 w_conv2 = weight_variable([5, 5, 32, 64]) # 构建偏置, 个数位输出通道数 b_conv2 = bias_variable([64]) # 进行卷积,激活,指定滑动窗口,填充类型 y_relu2 = tf.nn.relu(tf.nn.conv2d(y_conv1, w_conv2, strides=[1, 1, 1, 1], padding="SAME") + b_conv2) y_conv2 = tf.nn.max_pool(y_relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # 4、全连接第一层 with tf.variable_scope("FC1"): # 构建权重,[7*7*64, 1024],根据前面的卷积池化后一步步计算的大小变换是32->16->8 w_fc1 = weight_variable([8 * 8 * 64, 1024]) # 构建偏置,个数位第一次全连接层输出个数 b_fc1 = bias_variable([1024]) y_reshape = tf.reshape(y_conv2, [-1, 8 * 8 * 64]) # 全连接结果激活 y_fc1 = tf.nn.relu(tf.matmul(y_reshape, w_fc1) + b_fc1) # 5、全连接第二层 with tf.variable_scope("FC2"): # droupout层 droup = tf.nn.dropout(y_fc1, 1.0) # 构建权重,[1024, 10] w_fc2 = weight_variable([1024, 10]) # 构建偏置 [10] b_fc2 = bias_variable([10]) # 最后的全连接层 y_logit = tf.matmul(droup, w_fc2) + b_fc2 return y_logit def total_loss(y_label, y_logit): """ 计算训练损失 :param y_label: 目标值 :param y_logit: 计算值 :return: 损失 """ with tf.variable_scope("loss"): # 将y_label转换为one-hot编码形式 # y_onehot = tf.one_hot(y_label, depth=10, on_value=1.0) # softmax回归,以及计算交叉损失熵 cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_label, logits=y_logit) # 计算损失平均值 loss = tf.reduce_mean(cross_entropy) return loss def train(loss, y_label, y_logit, global_step): """ 训练数据得出准确率 :param loss: 损失大小 :return: """ with tf.variable_scope("train"): # 让学习率根据步伐,自动变换学习率,指定了每10步衰减基数为0.99,0.001为初始的学习率 lr = tf.train.exponential_decay(0.001, global_step, 10, 0.99, staircase=True) # 优化器 train_op = tf.train.GradientDescentOptimizer(lr).minimize(loss, global_step=global_step) # 计算准确率 equal_list = tf.equal(tf.argmax(y_logit, 1), tf.argmax(y_label, 1)) accuracy = tf.reduce_mean(tf.cast(equal_list, tf.float32)) return train_op, accuracy def input(): """ 获取输入数据 :return: image,label """ # 实例化 cfr = cifar_data.CifarRead() # 生成张量 image_batch, lab_batch = cfr.read_tfrecords() # 将目标值转换为one-hot编码格式 label = tf.one_hot(label_batch, depth=10, on_value=1.0) return image_batch, label, label_batch