zoukankan      html  css  js  c++  java
  • Kafka高级API和低级API

    Kafka消费过程分析

    kafka提供了两套consumer API高级Consumer API和低级API。

    高级API

    1高级API优点

    高级API 写起来简单

    不需要去自行去管理offset,系统通过zookeeper自行管理

    不需要管理分区,副本等情况,系统自动管理

    消费者断线会自动根据上一次记录在zookeeper中的offset去接着获取数据(默认设置1分钟更新一下zookeeper中存的的offset

    可以使用group来区分对同一个topic 的不同程序访问分离开来(不同的group记录不同的offset,这样不同程序读取同一个topic才不会因为offset互相影响)

    2高级API缺点

    不能自行控制offset(对于某些特殊需求来说)

    不能细化控制如分区、副本、zk

    2 低级API

    1)低级 API 优点

    能够开发者自己控制offset,想从哪里读取就从哪里读取。

    自行控制连接分区,对分区自定义进行负载均衡

    zookeeper的依赖性降低(如:offset不一定非要靠zk存储,自行存储offset即可,比如存在文件或者内存中)

    2)低级API缺点

    太过复杂,需要自行控制offset,连接哪个分区,找到分区leader

    高级producer

    package com.sinoiov.kafka.test;
    
    import kafka.javaapi.producer.Producer;
    import kafka.producer.KeyedMessage;
    import kafka.producer.ProducerConfig;
    import kafka.serializer.StringEncoder;
    
    import java.text.SimpleDateFormat;
    import java.util.Date;
    import java.util.Properties;
    
    /**
     * Created by caoyu on 16/4/21.
     * By 中交兴路 大数据中心-基础平台部
     */
    public class Kafka_produce extends Thread{
        private String topic;
        private SimpleDateFormat sdf = new SimpleDateFormat("MM-dd hh:mm:ss");
    
        public Kafka_produce(String topic){
            super();
            this.topic = topic;
        }
    
        @Override
        public void run() {
            Producer<String, String> producer = createProducer();
            long i = 0;
            while(true){
                i++;
                long now = System.currentTimeMillis();
                KeyedMessage<String, String> message = new KeyedMessage<String, String>(topic,sdf.format(new Date(now))+"_"+i+"");
                producer.send(message);
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    
        private Producer<String,String> createProducer(){
            Properties properties = new Properties();
            properties.put("metadata.broker.list","192.168.110.81:9092,192.168.110.82:9092,192.168.110.83:9092");
            properties.put("serializer.class", StringEncoder.class.getName());
            properties.put("zookeeper.connect", "nnn1:2181,nnn2:2181,nslave1:2181");
            return new Producer<String, String>(new ProducerConfig(properties));
        }
    }

    高级consumer

    package com.sinoiov.kafka.test;
    
    import kafka.consumer.Consumer;
    import kafka.consumer.ConsumerConfig;
    import kafka.consumer.ConsumerIterator;
    import kafka.consumer.KafkaStream;
    import kafka.javaapi.consumer.ConsumerConnector;
    
    import java.util.HashMap;
    import java.util.List;
    import java.util.Map;
    import java.util.Properties;
    
    /**
     * Created by caoyu on 16/4/21.
     * By 中交兴路 大数据中心-基础平台部
     */
    public class Kafka_consumer extends Thread {
        private String topic;
        private ConsumerConnector consumer;
    
        public Kafka_consumer(String topic){
            super();
            this.topic = topic;
            consumer = createConsumer();
        }
    
        public void shutDown(){
            if(consumer != null)
                consumer.shutdown();
        }
    
        @Override
        public void run() {
            Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
            topicCountMap.put(topic, 1);
            Map<String, List<KafkaStream<byte[], byte[]>>> messageSteam = consumer.createMessageStreams(topicCountMap);
            KafkaStream<byte[], byte[]> steam = messageSteam.get(topic).get(0);
            ConsumerIterator<byte[], byte[]> iterator = steam.iterator();
            while(iterator.hasNext()){
                String message = new String(iterator.next().message());
                System.out.println(message);
            }
        }
    
        private ConsumerConnector createConsumer(){
            Properties properties = new Properties();
            properties.put("zookeeper.connect","nnn1:2181,nnn2:2181,nslave1:2181");
            properties.put("group.id", "testsecond");
            return Consumer.createJavaConsumerConnector(new ConsumerConfig(properties));
        }
    }

    同样,代码也不复杂,基本都能参考看懂。

    高级 API 的特点

    优点
    • 高级 API 写起来简单

    • 不需要去自行去 管理offset,系统通过 zookeeper 自行管理

    • 不需要管理分区,副本等情况,系统自动管理

    • 消费者断线会自动根据上一次记录在 zookeeper 中的 offset去接着获取数据(默认设置1分钟更新一下 zookeeper 中存的的 offset)

    • 可以使用 group 来区分对同一个 topic 的不同程序访问分离开来(不同的 group 记录不同的 offset,这样不同程序读取同一个 topic 才不会因为 offset 互相影响)

    缺点
    • 不能自行控制 offset(对于某些特殊需求来说)

    • 不能细化控制如分区、副本、zk 等

    低级 API 的特点

    优点
    • 能够开发者自己控制 offset,想从哪里读取就从哪里读取。

    • 自行控制连接分区,对分区自定义进行负载均衡

    • 对 zookeeper 的依赖性降低(如:offset 不一定非要靠 zk 存储,自行存储 offset 即可,比如存在文件或者内存中)

    缺点

    • 太过复杂,需要自行控制 offset,连接哪个分区,找到分区 leader 等,请参考下面的低级 API 的示例代码

    低级 API 示例代码

    package com.sinoiov.kafka.test;
    
    import java.nio.ByteBuffer;
    import java.util.ArrayList;
    import java.util.Collections;
    import java.util.HashMap;
    import java.util.List;
    import java.util.Map;
    
    import kafka.api.FetchRequest;
    import kafka.api.FetchRequestBuilder;
    import kafka.api.PartitionOffsetRequestInfo;
    import kafka.cluster.BrokerEndPoint;
    import kafka.common.ErrorMapping;
    import kafka.common.TopicAndPartition;
    import kafka.javaapi.FetchResponse;
    import kafka.javaapi.OffsetResponse;
    import kafka.javaapi.PartitionMetadata;
    import kafka.javaapi.TopicMetadata;
    import kafka.javaapi.TopicMetadataRequest;
    import kafka.javaapi.consumer.SimpleConsumer;
    import kafka.message.MessageAndOffset;
    
    /**
     * Created by caoyu on 16/4/26.
     * By 中交兴路 大数据中心-基础平台部
     */
    public class SimpleExample {
        private List<String> m_replicaBrokers = new ArrayList<String>();
    
        public SimpleExample() {
            m_replicaBrokers = new ArrayList<String>();
        }
    
        public static void main(String args[]) {
            SimpleExample example = new SimpleExample();
            // 最大读取消息数量
            long maxReads = Long.parseLong("3");
            // 要订阅的topic
            String topic = "test1";
            // 要查找的分区
            int partition = Integer.parseInt("0");
            // broker节点的ip
            List<String> seeds = new ArrayList<String>();
            seeds.add("192.168.110.81");
            seeds.add("192.168.110.82");
            seeds.add("192.168.110.83");
            // 端口
            int port = Integer.parseInt("9092");
            try {
                example.run(maxReads, topic, partition, seeds, port);
            } catch (Exception e) {
                System.out.println("Oops:" + e);
                e.printStackTrace();
            }
        }
    
        public void run(long a_maxReads, String a_topic, int a_partition, List<String> a_seedBrokers, int a_port) throws Exception {
            // 获取指定Topic partition的元数据
            PartitionMetadata metadata = findLeader(a_seedBrokers, a_port, a_topic, a_partition);
            if (metadata == null) {
                System.out.println("Can't find metadata for Topic and Partition. Exiting");
                return;
            }
            if (metadata.leader() == null) {
                System.out.println("Can't find Leader for Topic and Partition. Exiting");
                return;
            }
            String leadBroker = metadata.leader().host();
            String clientName = "Client_" + a_topic + "_" + a_partition;
    
            SimpleConsumer consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName);
            long readOffset = getLastOffset(consumer, a_topic, a_partition, kafka.api.OffsetRequest.EarliestTime(), clientName);
            int numErrors = 0;
            while (a_maxReads > 0) {
                if (consumer == null) {
                    consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName);
                }
                FetchRequest req = new FetchRequestBuilder().clientId(clientName).addFetch(a_topic, a_partition, readOffset, 100000).build();
                FetchResponse fetchResponse = consumer.fetch(req);
    
                if (fetchResponse.hasError()) {
                    numErrors++;
                    // Something went wrong!
                    short code = fetchResponse.errorCode(a_topic, a_partition);
                    System.out.println("Error fetching data from the Broker:" + leadBroker + " Reason: " + code);
                    if (numErrors > 5)
                        break;
                    if (code == ErrorMapping.OffsetOutOfRangeCode()) {
                        // We asked for an invalid offset. For simple case ask for
                        // the last element to reset
                        readOffset = getLastOffset(consumer, a_topic, a_partition, kafka.api.OffsetRequest.LatestTime(), clientName);
                        continue;
                    }
                    consumer.close();
                    consumer = null;
                    leadBroker = findNewLeader(leadBroker, a_topic, a_partition, a_port);
                    continue;
                }
                numErrors = 0;
    
                long numRead = 0;
                for (MessageAndOffset messageAndOffset : fetchResponse.messageSet(a_topic, a_partition)) {
                    long currentOffset = messageAndOffset.offset();
                    if (currentOffset < readOffset) {
                        System.out.println("Found an old offset: " + currentOffset + " Expecting: " + readOffset);
                        continue;
                    }
    
                    readOffset = messageAndOffset.nextOffset();
                    ByteBuffer payload = messageAndOffset.message().payload();
    
                    byte[] bytes = new byte[payload.limit()];
                    payload.get(bytes);
                    System.out.println(String.valueOf(messageAndOffset.offset()) + ": " + new String(bytes, "UTF-8"));
                    numRead++;
                    a_maxReads--;
                }
    
                if (numRead == 0) {
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException ie) {
                    }
                }
            }
            if (consumer != null)
                consumer.close();
        }
    
        public static long getLastOffset(SimpleConsumer consumer, String topic, int partition, long whichTime, String clientName) {
            TopicAndPartition topicAndPartition = new TopicAndPartition(topic, partition);
            Map<TopicAndPartition, PartitionOffsetRequestInfo> requestInfo = new HashMap<TopicAndPartition, PartitionOffsetRequestInfo>();
            requestInfo.put(topicAndPartition, new PartitionOffsetRequestInfo(whichTime, 1));
            kafka.javaapi.OffsetRequest request = new kafka.javaapi.OffsetRequest(requestInfo, kafka.api.OffsetRequest.CurrentVersion(), clientName);
            OffsetResponse response = consumer.getOffsetsBefore(request);
    
            if (response.hasError()) {
                System.out.println("Error fetching data Offset Data the Broker. Reason: " + response.errorCode(topic, partition));
                return 0;
            }
            long[] offsets = response.offsets(topic, partition);
            return offsets[0];
        }
    
        /**
         * @param a_oldLeader
         * @param a_topic
         * @param a_partition
         * @param a_port
         * @return String
         * @throws Exception
         *             找一个leader broker
         */
        private String findNewLeader(String a_oldLeader, String a_topic, int a_partition, int a_port) throws Exception {
            for (int i = 0; i < 3; i++) {
                boolean goToSleep = false;
                PartitionMetadata metadata = findLeader(m_replicaBrokers, a_port, a_topic, a_partition);
                if (metadata == null) {
                    goToSleep = true;
                } else if (metadata.leader() == null) {
                    goToSleep = true;
                } else if (a_oldLeader.equalsIgnoreCase(metadata.leader().host()) && i == 0) {
                    // first time through if the leader hasn't changed give
                    // ZooKeeper a second to recover
                    // second time, assume the broker did recover before failover,
                    // or it was a non-Broker issue
                    //
                    goToSleep = true;
                } else {
                    return metadata.leader().host();
                }
                if (goToSleep) {
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException ie) {
                    }
                }
            }
            System.out.println("Unable to find new leader after Broker failure. Exiting");
            throw new Exception("Unable to find new leader after Broker failure. Exiting");
        }
    
        private PartitionMetadata findLeader(List<String> a_seedBrokers, int a_port, String a_topic, int a_partition) {
            PartitionMetadata returnMetaData = null;
            loop: for (String seed : a_seedBrokers) {
                SimpleConsumer consumer = null;
                try {
                    consumer = new SimpleConsumer(seed, a_port, 100000, 64 * 1024, "leaderLookup");
                    List<String> topics = Collections.singletonList(a_topic);
                    TopicMetadataRequest req = new TopicMetadataRequest(topics);
                    kafka.javaapi.TopicMetadataResponse resp = consumer.send(req);
    
                    List<TopicMetadata> metaData = resp.topicsMetadata();
                    for (TopicMetadata item : metaData) {
                        for (PartitionMetadata part : item.partitionsMetadata()) {
                            if (part.partitionId() == a_partition) {
                                returnMetaData = part;
                                break loop;
                            }
                        }
                    }
                } catch (Exception e) {
                    System.out.println("Error communicating with Broker [" + seed + "] to find Leader for [" + a_topic + ", " + a_partition + "] Reason: " + e);
                } finally {
                    if (consumer != null)
                        consumer.close();
                }
            }
            if (returnMetaData != null) {
                m_replicaBrokers.clear();
                for (BrokerEndPoint replica : returnMetaData.replicas()) {
                    m_replicaBrokers.add(replica.host());
                }
            }
            return returnMetaData;
        }
    }
    

      

  • 相关阅读:
    转: requirejs压缩打包r.js使用示例 2 (~~很详细的教程)
    转:requirejs打包压缩r.js使用示例
    转: RequireJS Optimizer 的使用和配置方法
    转:requirejs:让人迷惑的路径解析(~~不错)
    转: requirejs中文api (详细)
    转: 让html5标签在ie8及以下的被正确解析的解决方案
    浏览器对body节点scrollTop解析的差异
    vue全局配置
    vue watch 深度监听以及立即监听
    Vue插件
  • 原文地址:https://www.cnblogs.com/alexzhang92/p/10894800.html
Copyright © 2011-2022 走看看