zoukankan      html  css  js  c++  java
  • pandas分组和聚合

    Pandas分组与聚合

    分组 (groupby)

    • 对数据集进行分组,然后对每组进行统计分析

    • SQL能够对数据进行过滤,分组聚合

    • pandas能利用groupby进行更加复杂的分组运算

    • 分组运算过程:split->apply->combine

      1. 拆分:进行分组的根据

      2. 应用:每个分组运行的计算规则

      3. 合并:把每个分组的计算结果合并起来

    示例代码:

    
    import pandas as pd
    import numpy as np
    
    dict_obj = {'key1' : ['a', 'b', 'a', 'b', 
                          'a', 'b', 'a', 'a'],
                'key2' : ['one', 'one', 'two', 'three',
                          'two', 'two', 'one', 'three'],
                'data1': np.random.randn(8),
                'data2': np.random.randn(8)}
    df_obj = pd.DataFrame(dict_obj)
    print(df_obj)
    

    运行结果:

          data1     data2 key1   key2
    0  0.974685 -0.672494    a    one
    1 -0.214324  0.758372    b    one
    2  1.508838  0.392787    a    two
    3  0.522911  0.630814    b  three
    4  1.347359 -0.177858    a    two
    5 -0.264616  1.017155    b    two
    6 -0.624708  0.450885    a    one
    7 -1.019229 -1.143825    a  three
    

    一、GroupBy对象:DataFrameGroupBy,SeriesGroupBy

    1. 分组操作

    groupby()进行分组,GroupBy对象没有进行实际运算,只是包含分组的中间数据

    按列名分组:obj.groupby(‘label’)

    示例代码:

    # dataframe根据key1进行分组
    print(type(df_obj.groupby('key1')))
    
    # dataframe的 data1 列根据 key1 进行分组
    print(type(df_obj['data1'].groupby(df_obj['key1'])))
    

    运行结果:

    <class 'pandas.core.groupby.DataFrameGroupBy'>
    <class 'pandas.core.groupby.SeriesGroupBy'>
    

    2. 分组运算

    对GroupBy对象进行分组运算/多重分组运算,如mean()

    非数值数据不进行分组运算

    示例代码:

    # 分组运算
    grouped1 = df_obj.groupby('key1')
    print(grouped1.mean())
    
    grouped2 = df_obj['data1'].groupby(df_obj['key1'])
    print(grouped2.mean())
    

    运行结果:

             data1     data2
    key1                    
    a     0.437389 -0.230101
    b     0.014657  0.802114
    key1
    a    0.437389
    b    0.014657
    Name: data1, dtype: float64
    

    size() 返回每个分组的元素个数

    示例代码:

    
    # size
    print(grouped1.size())
    print(grouped2.size())
    

    运行结果:

    key1
    a    5
    b    3
    dtype: int64
    key1
    a    5
    b    3
    dtype: int64
    

    3. 按自定义的key分组

    obj.groupby(self_def_key)

    自定义的key可为列表或多层列表

    obj.groupby([‘label1’, ‘label2’])->多层dataframe

    示例代码:

    # 按自定义key分组,列表
    self_def_key = [0, 1, 2, 3, 3, 4, 5, 7]
    print(df_obj.groupby(self_def_key).size())
    
    # 按自定义key分组,多层列表
    print(df_obj.groupby([df_obj['key1'], df_obj['key2']]).size())
    
    # 按多个列多层分组
    grouped2 = df_obj.groupby(['key1', 'key2'])
    print(grouped2.size())
    
    # 多层分组按key的顺序进行
    grouped3 = df_obj.groupby(['key2', 'key1'])
    print(grouped3.mean())
    # unstack可以将多层索引的结果转换成单层的dataframe
    print(grouped3.mean().unstack())
    

    运行结果:

    0    1
    1    1
    2    1
    3    2
    4    1
    5    1
    7    1
    dtype: int64
    
    key1  key2 
    a     one      2
          three    1
          two      2
    b     one      1
          three    1
          two      1
    dtype: int64
    
    
    key1  key2 
    a     one      2
          three    1
          two      2
    b     one      1
          three    1
          two      1
    dtype: int64
    
    
                   data1     data2
    key2  key1                    
    one   a     0.174988 -0.110804
          b    -0.214324  0.758372
    three a    -1.019229 -1.143825
          b     0.522911  0.630814
    two   a     1.428099  0.107465
          b    -0.264616  1.017155
    
              data1               data2          
    key1          a         b         a         b
    key2                                         
    one    0.174988 -0.214324 -0.110804  0.758372
    three -1.019229  0.522911 -1.143825  0.630814
    two    1.428099 -0.264616  0.107465  1.017155
    

    二、GroupBy对象支持迭代操作

    每次迭代返回一个元组 (group_name, group_data)

    可用于分组数据的具体运算

    1. 单层分组

    示例代码:

    # 单层分组,根据key1
    for group_name, group_data in grouped1:
        print(group_name)
        print(group_data)
    

    运行结果:

    a
          data1     data2 key1   key2
    0  0.974685 -0.672494    a    one
    2  1.508838  0.392787    a    two
    4  1.347359 -0.177858    a    two
    6 -0.624708  0.450885    a    one
    7 -1.019229 -1.143825    a  three
    
    b
          data1     data2 key1   key2
    1 -0.214324  0.758372    b    one
    3  0.522911  0.630814    b  three
    5 -0.264616  1.017155    b    two
    

    2. 多层分组

    示例代码:

    # 多层分组,根据key1 和 key2
    for group_name, group_data in grouped2:
        print(group_name)
        print(group_data)
    

    运行结果:

    ('a', 'one')
          data1     data2 key1 key2
    0  0.974685 -0.672494    a  one
    6 -0.624708  0.450885    a  one
    
    ('a', 'three')
          data1     data2 key1   key2
    7 -1.019229 -1.143825    a  three
    
    ('a', 'two')
          data1     data2 key1 key2
    2  1.508838  0.392787    a  two
    4  1.347359 -0.177858    a  two
    
    ('b', 'one')
          data1     data2 key1 key2
    1 -0.214324  0.758372    b  one
    
    ('b', 'three')
          data1     data2 key1   key2
    3  0.522911  0.630814    b  three
    
    ('b', 'two')
          data1     data2 key1 key2
    5 -0.264616  1.017155    b  two
    

    三、GroupBy对象可以转换成列表或字典

    示例代码:

    # GroupBy对象转换list
    print(list(grouped1))
    
    # GroupBy对象转换dict
    print(dict(list(grouped1)))
    

    运行结果:

    [('a',       data1     data2 key1   key2
    0  0.974685 -0.672494    a    one
    2  1.508838  0.392787    a    two
    4  1.347359 -0.177858    a    two
    6 -0.624708  0.450885    a    one
    7 -1.019229 -1.143825    a  three), 
    ('b',       data1     data2 key1   key2
    1 -0.214324  0.758372    b    one
    3  0.522911  0.630814    b  three
    5 -0.264616  1.017155    b    two)]
    
    {'a':       data1     data2 key1   key2
    0  0.974685 -0.672494    a    one
    2  1.508838  0.392787    a    two
    4  1.347359 -0.177858    a    two
    6 -0.624708  0.450885    a    one
    7 -1.019229 -1.143825    a  three, 
    'b':       data1     data2 key1   key2
    1 -0.214324  0.758372    b    one
    3  0.522911  0.630814    b  three
    5 -0.264616  1.017155    b    two}
    

    1. 按列分组、按数据类型分组

    示例代码:

    # 按列分组
    print(df_obj.dtypes)
    
    # 按数据类型分组
    print(df_obj.groupby(df_obj.dtypes, axis=1).size())
    print(df_obj.groupby(df_obj.dtypes, axis=1).sum())
    

    运行结果:

    data1    float64
    data2    float64
    key1      object
    key2      object
    dtype: object
    
    float64    2
    object     2
    dtype: int64
    
        float64  object
    0  0.302191    a one
    1  0.544048    b one
    2  1.901626    a two
    3  1.153725  b three
    4  1.169501    a two
    5  0.752539    b two
    6 -0.173823    a one
    7 -2.163054  a three
    

    2. 其他分组方法

    示例代码:

    df_obj2 = pd.DataFrame(np.random.randint(1, 10, (5,5)),
                           columns=['a', 'b', 'c', 'd', 'e'],
                           index=['A', 'B', 'C', 'D', 'E'])
    df_obj2.ix[1, 1:4] = np.NaN
    print(df_obj2)
    

    运行结果:

       a    b    c    d  e
    A  7  2.0  4.0  5.0  8
    B  4  NaN  NaN  NaN  1
    C  3  2.0  5.0  4.0  6
    D  3  1.0  9.0  7.0  3
    E  6  1.0  6.0  8.0  1
    

    3. 通过字典分组

    示例代码:

    # 通过字典分组
    mapping_dict = {'a':'Python', 'b':'Python', 'c':'Java', 'd':'C', 'e':'Java'}
    print(df_obj2.groupby(mapping_dict, axis=1).size())
    print(df_obj2.groupby(mapping_dict, axis=1).count()) # 非NaN的个数
    print(df_obj2.groupby(mapping_dict, axis=1).sum())
    

    运行结果:

    C         1
    Java      2
    Python    2
    dtype: int64
    
       C  Java  Python
    A  1     2       2
    B  0     1       1
    C  1     2       2
    D  1     2       2
    E  1     2       2
    
         C  Java  Python
    A  5.0  12.0     9.0
    B  NaN   1.0     4.0
    C  4.0  11.0     5.0
    D  7.0  12.0     4.0
    E  8.0   7.0     7.0
    

    4. 通过函数分组,函数传入的参数为行索引或列索引

    示例代码:

    # 通过函数分组
    df_obj3 = pd.DataFrame(np.random.randint(1, 10, (5,5)),
                           columns=['a', 'b', 'c', 'd', 'e'],
                           index=['AA', 'BBB', 'CC', 'D', 'EE'])
    #df_obj3
    
    def group_key(idx):
        """
            idx 为列索引或行索引
        """
        #return idx
        return len(idx)
    
    print(df_obj3.groupby(group_key).size())
    
    # 以上自定义函数等价于
    #df_obj3.groupby(len).size()
    

    运行结果:

    1    1
    2    3
    3    1
    dtype: int64
    

    5. 通过索引级别分组

    示例代码:

    # 通过索引级别分组
    columns = pd.MultiIndex.from_arrays([['Python', 'Java', 'Python', 'Java', 'Python'],
                                         ['A', 'A', 'B', 'C', 'B']], names=['language', 'index'])
    df_obj4 = pd.DataFrame(np.random.randint(1, 10, (5, 5)), columns=columns)
    print(df_obj4)
    
    # 根据language进行分组
    print(df_obj4.groupby(level='language', axis=1).sum())
    # 根据index进行分组
    print(df_obj4.groupby(level='index', axis=1).sum())
    

    运行结果:

    language Python Java Python Java Python
    index         A    A      B    C      B
    0             2    7      8    4      3
    1             5    2      6    1      2
    2             6    4      4    5      2
    3             4    7      4    3      1
    4             7    4      3    4      8
    
    language  Java  Python
    0           11      13
    1            3      13
    2            9      12
    3           10       9
    4            8      18
    
    index   A   B  C
    0       9  11  4
    1       7   8  1
    2      10   6  5
    3      11   5  3
    4      11  11  4
    

    聚合 (aggregation)

    • 数组产生标量的过程,如mean()、count()等

    • 常用于对分组后的数据进行计算

    示例代码:

    dict_obj = {'key1' : ['a', 'b', 'a', 'b', 
                          'a', 'b', 'a', 'a'],
                'key2' : ['one', 'one', 'two', 'three',
                          'two', 'two', 'one', 'three'],
                'data1': np.random.randint(1,10, 8),
                'data2': np.random.randint(1,10, 8)}
    df_obj5 = pd.DataFrame(dict_obj)
    print(df_obj5)
    

    运行结果:

       data1  data2 key1   key2
    0      3      7    a    one
    1      1      5    b    one
    2      7      4    a    two
    3      2      4    b  three
    4      6      4    a    two
    5      9      9    b    two
    6      3      5    a    one
    7      8      4    a  three
    

    1. 内置的聚合函数

    sum(), mean(), max(), min(), count(), size(), describe()

    示例代码:

    print(df_obj5.groupby('key1').sum())
    print(df_obj5.groupby('key1').max())
    print(df_obj5.groupby('key1').min())
    print(df_obj5.groupby('key1').mean())
    print(df_obj5.groupby('key1').size())
    print(df_obj5.groupby('key1').count())
    print(df_obj5.groupby('key1').describe())
    

    运行结果:

          data1  data2
    key1              
    a        27     24
    b        12     18
    
          data1  data2 key2
    key1                   
    a         8      7  two
    b         9      9  two
    
          data1  data2 key2
    key1                   
    a         3      4  one
    b         1      4  one
    
          data1  data2
    key1              
    a       5.4    4.8
    b       4.0    6.0
    
    key1
    a    5
    b    3
    dtype: int64
    
          data1  data2  key2
    key1                    
    a         5      5     5
    b         3      3     3
    
                   data1     data2
    key1                          
    a    count  5.000000  5.000000
         mean   5.400000  4.800000
         std    2.302173  1.303840
         min    3.000000  4.000000
         25%    3.000000  4.000000
         50%    6.000000  4.000000
         75%    7.000000  5.000000
         max    8.000000  7.000000
    b    count  3.000000  3.000000
         mean   4.000000  6.000000
         std    4.358899  2.645751
         min    1.000000  4.000000
         25%    1.500000  4.500000
         50%    2.000000  5.000000
         75%    5.500000  7.000000
         max    9.000000  9.000000
    

    2. 可自定义函数,传入agg方法中

    grouped.agg(func)

    func的参数为groupby索引对应的记录

    示例代码:

    # 自定义聚合函数
    def peak_range(df):
        """
            返回数值范围
        """
        #print type(df) #参数为索引所对应的记录
        return df.max() - df.min()
    
    print(df_obj5.groupby('key1').agg(peak_range))
    print(df_obj.groupby('key1').agg(lambda df : df.max() - df.min()))
    

    运行结果:

          data1  data2
    key1              
    a         5      3
    b         8      5
    
             data1     data2
    key1                    
    a     2.528067  1.594711
    b     0.787527  0.386341
    In [25]:
    

    3. 应用多个聚合函数

    同时应用多个函数进行聚合操作,使用函数列表

    示例代码:

    # 应用多个聚合函数
    
    # 同时应用多个聚合函数
    print(df_obj.groupby('key1').agg(['mean', 'std', 'count', peak_range])) # 默认列名为函数名
    
    print(df_obj.groupby('key1').agg(['mean', 'std', 'count', ('range', peak_range)])) # 通过元组提供新的列名
    

    运行结果:

             data1                                data2                           
              mean       std count peak_range      mean       std count peak_range
    key1                                                                          
    a     0.437389  1.174151     5   2.528067 -0.230101  0.686488     5   1.594711
    b     0.014657  0.440878     3   0.787527  0.802114  0.196850     3   0.386341
    
             data1                               data2                          
              mean       std count     range      mean       std count     range
    key1                                                                        
    a     0.437389  1.174151     5  2.528067 -0.230101  0.686488     5  1.594711
    b     0.014657  0.440878     3  0.787527  0.802114  0.196850     3  0.386341
    

    4. 对不同的列分别作用不同的聚合函数,使用dict

    示例代码:

    # 每列作用不同的聚合函数
    dict_mapping = {'data1':'mean',
                    'data2':'sum'}
    print(df_obj.groupby('key1').agg(dict_mapping))
    
    dict_mapping = {'data1':['mean','max'],
                    'data2':'sum'}
    print(df_obj.groupby('key1').agg(dict_mapping))
    

    运行结果:

             data1     data2
    key1                    
    a     0.437389 -1.150505
    b     0.014657  2.406341
    
             data1               data2
              mean       max       sum
    key1                              
    a     0.437389  1.508838 -1.150505
    b     0.014657  0.522911  2.406341
    

    5. 常用的内置聚合函数

    数据的分组运算

    示例代码:

    import pandas as pd
    import numpy as np
    
    dict_obj = {'key1' : ['a', 'b', 'a', 'b', 
                          'a', 'b', 'a', 'a'],
                'key2' : ['one', 'one', 'two', 'three',
                          'two', 'two', 'one', 'three'],
                'data1': np.random.randint(1, 10, 8),
                'data2': np.random.randint(1, 10, 8)}
    df_obj = pd.DataFrame(dict_obj)
    print(df_obj)
    
    # 按key1分组后,计算data1,data2的统计信息并附加到原始表格中,并添加表头前缀
    k1_sum = df_obj.groupby('key1').sum().add_prefix('sum_')
    print(k1_sum)
    

    运行结果:

       data1  data2 key1   key2
    0      5      1    a    one
    1      7      8    b    one
    2      1      9    a    two
    3      2      6    b  three
    4      9      8    a    two
    5      8      3    b    two
    6      3      5    a    one
    7      8      3    a  three
    
          sum_data1  sum_data2
    key1                      
    a            26         26
    b            17         17
    

    聚合运算后会改变原始数据的形状,

    如何保持原始数据的形状?

    1. merge

    使用merge的外连接,比较复杂

    示例代码:

    # 方法1,使用merge
    k1_sum_merge = pd.merge(df_obj, k1_sum, left_on='key1', right_index=True)
    print(k1_sum_merge)
    

    运行结果:

       data1  data2 key1   key2  sum_data1  sum_data2
    0      5      1    a    one         26         26
    2      1      9    a    two         26         26
    4      9      8    a    two         26         26
    6      3      5    a    one         26         26
    7      8      3    a  three         26         26
    1      7      8    b    one         17         17
    3      2      6    b  three         17         17
    5      8      3    b    two         17         17
    

    2. transform

    transform的计算结果和原始数据的形状保持一致,

    如:grouped.transform(np.sum)

    示例代码:

    # 方法2,使用transform
    k1_sum_tf = df_obj.groupby('key1').transform(np.sum).add_prefix('sum_')
    df_obj[k1_sum_tf.columns] = k1_sum_tf
    print(df_obj)
    

    运行结果:

       data1  data2 key1   key2 sum_data1 sum_data2           sum_key2
    0      5      1    a    one        26        26  onetwotwoonethree
    1      7      8    b    one        17        17        onethreetwo
    2      1      9    a    two        26        26  onetwotwoonethree
    3      2      6    b  three        17        17        onethreetwo
    4      9      8    a    two        26        26  onetwotwoonethree
    5      8      3    b    two        17        17        onethreetwo
    6      3      5    a    one        26        26  onetwotwoonethree
    7      8      3    a  three        26        26  onetwotwoonethree
    

    也可传入自定义函数,

    示例代码:

    # 自定义函数传入transform
    def diff_mean(s):
        """
            返回数据与均值的差值
        """
        return s - s.mean()
    
    print(df_obj.groupby('key1').transform(diff_mean))
    

    运行结果:

          data1     data2 sum_data1 sum_data2
    0 -0.200000 -4.200000         0         0
    1  1.333333  2.333333         0         0
    2 -4.200000  3.800000         0         0
    3 -3.666667  0.333333         0         0
    4  3.800000  2.800000         0         0
    5  2.333333 -2.666667         0         0
    6 -2.200000 -0.200000         0         0
    7  2.800000 -2.200000         0         0
    

    groupby.apply(func)

    func函数也可以在各分组上分别调用,最后结果通过pd.concat组装到一起(数据合并)

    示例代码:

    import pandas as pd
    import numpy as np
    
    dataset_path = './starcraft.csv'
    df_data = pd.read_csv(dataset_path, usecols=['LeagueIndex', 'Age', 'HoursPerWeek', 
                                                 'TotalHours', 'APM'])
    
    def top_n(df, n=3, column='APM'):
        """
            返回每个分组按 column 的 top n 数据
        """
        return df.sort_values(by=column, ascending=False)[:n]
    
    print(df_data.groupby('LeagueIndex').apply(top_n))
    

    运行结果:

                      LeagueIndex   Age  HoursPerWeek  TotalHours       APM
    LeagueIndex                                                            
    1           2214            1  20.0          12.0       730.0  172.9530
                2246            1  27.0           8.0       250.0  141.6282
                1753            1  20.0          28.0       100.0  139.6362
    2           3062            2  20.0           6.0       100.0  179.6250
                3229            2  16.0          24.0       110.0  156.7380
                1520            2  29.0           6.0       250.0  151.6470
    3           1557            3  22.0           6.0       200.0  226.6554
                484             3  19.0          42.0       450.0  220.0692
                2883            3  16.0           8.0       800.0  208.9500
    4           2688            4  26.0          24.0       990.0  249.0210
                1759            4  16.0           6.0        75.0  229.9122
                2637            4  23.0          24.0       650.0  227.2272
    5           3277            5  18.0          16.0       950.0  372.6426
                93              5  17.0          36.0       720.0  335.4990
                202             5  37.0          14.0       800.0  327.7218
    6           734             6  16.0          28.0       730.0  389.8314
                2746            6  16.0          28.0      4000.0  350.4114
                1810            6  21.0          14.0       730.0  323.2506
    7           3127            7  23.0          42.0      2000.0  298.7952
                104             7  21.0          24.0      1000.0  286.4538
                1654            7  18.0          98.0       700.0  236.0316
    8           3393            8   NaN           NaN         NaN  375.8664
                3373            8   NaN           NaN         NaN  364.8504
                3372            8   NaN           NaN         NaN  355.3518
    

    1. 产生层级索引:外层索引是分组名,内层索引是df_obj的行索引

    示例代码:

    # apply函数接收的参数会传入自定义的函数中
    print(df_data.groupby('LeagueIndex').apply(top_n, n=2, column='Age'))
    

    运行结果:

                      LeagueIndex   Age  HoursPerWeek  TotalHours       APM
    LeagueIndex                                                            
    1           3146            1  40.0          12.0       150.0   38.5590
                3040            1  39.0          10.0       500.0   29.8764
    2           920             2  43.0          10.0       730.0   86.0586
                2437            2  41.0           4.0       200.0   54.2166
    3           1258            3  41.0          14.0       800.0   77.6472
                2972            3  40.0          10.0       500.0   60.5970
    4           1696            4  44.0           6.0       500.0   89.5266
                1729            4  39.0           8.0       500.0   86.7246
    5           202             5  37.0          14.0       800.0  327.7218
                2745            5  37.0          18.0      1000.0  123.4098
    6           3069            6  31.0           8.0       800.0  133.1790
                2706            6  31.0           8.0       700.0   66.9918
    7           2813            7  26.0          36.0      1300.0  188.5512
                1992            7  26.0          24.0      1000.0  219.6690
    8           3340            8   NaN           NaN         NaN  189.7404
                3341            8   NaN           NaN         NaN  287.8128
    

    2. 禁止层级索引, group_keys=False

    示例代码:

    print(df_data.groupby('LeagueIndex', group_keys=False).apply(top_n))
    

    运行结果:

          LeagueIndex   Age  HoursPerWeek  TotalHours       APM
    2214            1  20.0          12.0       730.0  172.9530
    2246            1  27.0           8.0       250.0  141.6282
    1753            1  20.0          28.0       100.0  139.6362
    3062            2  20.0           6.0       100.0  179.6250
    3229            2  16.0          24.0       110.0  156.7380
    1520            2  29.0           6.0       250.0  151.6470
    1557            3  22.0           6.0       200.0  226.6554
    484             3  19.0          42.0       450.0  220.0692
    2883            3  16.0           8.0       800.0  208.9500
    2688            4  26.0          24.0       990.0  249.0210
    1759            4  16.0           6.0        75.0  229.9122
    2637            4  23.0          24.0       650.0  227.2272
    3277            5  18.0          16.0       950.0  372.6426
    93              5  17.0          36.0       720.0  335.4990
    202             5  37.0          14.0       800.0  327.7218
    734             6  16.0          28.0       730.0  389.8314
    2746            6  16.0          28.0      4000.0  350.4114
    1810            6  21.0          14.0       730.0  323.2506
    3127            7  23.0          42.0      2000.0  298.7952
    104             7  21.0          24.0      1000.0  286.4538
    1654            7  18.0          98.0       700.0  236.0316
    3393            8   NaN           NaN         NaN  375.8664
    3373            8   NaN           NaN         NaN  364.8504
    3372            8   NaN           NaN         NaN  355.3518
    

    apply可以用来处理不同分组内的缺失数据填充,填充该分组的均值。

  • 相关阅读:
    国外程序员整理的 C++ 资源大全(转)
    深入C#中get与set的详解(转)
    C#异常类型与异常处理
    strcat函数的使用需要注意的问题
    QString转换为char* (转)
    Qt之阴影边框(转)
    Qt 手动添加ui文件到工程(转)
    C++ 类 和 对象!
    怎样才能和编程语言对上眼?你需要做些准备以及...
    【编程骚操作】C++ 获取系统时间!
  • 原文地址:https://www.cnblogs.com/alexzhang92/p/9794035.html
Copyright © 2011-2022 走看看