原创声明:
本原创教程由芯驿电子科技(上海)有限公司(ALINX)创作,版权归本公司所有,如需转载,需授权并注明出处。
适用于板卡型号:
AXU2CGA/AXU2CGB/AXU3EG/AXU4EV-E/AXU4EV-P/AXU5EV-E/AXU5EV-P /AXU9EG/AXU15EG
实验Vivado工程为“pwm_led”。
本文主要讲解使用PWM控制LED,实现呼吸灯的效果。
1.实验原理
如下图所示,用一个N比特的计数器,最大值可以表示为2的N次方,最小值0,计数器以“period”为步进值累加,加到最大值后会溢出,进入下一个累加周期。当计数器值大于“duty”时,脉冲输出高,否则输出低,这样就可以完成图中红色线所示的脉冲占空比可调的脉冲输出,同时“period”可以调节脉冲频率,可以理解为计数器的步进值。
PWM脉宽调制示意图
不同的脉冲占空比的方波输出后加在LED上,LED灯就会显示不同的亮度,通过不断地调节方波的占空比,从而实现LED灯亮度的调节。
2. 实验设计
PWM模块设计非常简单,在上面的原理中已经讲到,这里不再说原理。
信号名称 | 方向 | 说明 |
clk | in | 时钟输入 |
rst | in | 异步复位输入,高复位 |
period | in | PWM脉宽周期(频率)控制。period = PWM输出频率 * (2 的N次方) / 系统时钟频率。显然N越大,频率精度越高。 |
duty | in | 占空比控制,占空比 = duty / (2的N次方)* 100% |
PWM模块(ax_pwm)端口
`timescale1ns/1ps
module ax_pwm
#(
parameter N =16//pwm bit width
)
(
input clk,
input rst,
input[N -1:0]period, //pwm step value
input[N -1:0]duty, //duty value
output pwm_out //pwm output
);
reg[N -1:0] period_r; //period register
reg[N -1:0] duty_r; //duty register
reg[N -1:0] period_cnt; //period counter
reg pwm_r;
assign pwm_out = pwm_r;
always@(posedge clk orposedge rst)
begin
if(rst==1)
begin
period_r <={ N {1'b0}};
duty_r <={ N {1'b0}};
end
else
begin
period_r <= period;
duty_r <= duty;
end
end
//period counter, step is period value
always@(posedge clk orposedge rst)
begin
if(rst==1)
period_cnt <={ N {1'b0}};
else
period_cnt <= period_cnt + period_r;
end
always@(posedge clk orposedge rst)
begin
if(rst==1)
begin
pwm_r <=1'b0;
end
else
begin
if(period_cnt >= duty_r) //if period counter is bigger or equals to duty value, then set pwm value to high
pwm_r <=1'b1;
else
pwm_r <=1'b0;
end
end
那么如何实现呼吸灯的效果呢?我们知道呼吸灯效果是由暗不断的变亮,再由亮不断的变暗的过程,而亮暗效果是由占空比来调节的,因此我们主要来控制占空比,也就是控制duty的值。
在下面的测试代码中,通过设置period的值,设定PWM的频率为200Hz,PWM_PLUS状态即是增加duty值,如果增加到最大值,将pwm_flag置1,并开始将duty值减少,待减少到最小的值,则开始增加duty值,不断循环。其中PWM_GAP状态为调整间隔,时间为100us。
`timescale1ns/1ps
module pwm_test(
input clk, //25MHz
input rst_n, //low active
output led //high-off, low-on
);
localparam CLK_FREQ =25; //25MHz
localparam US_COUNT = CLK_FREQ ; //1 us counter
localparam MS_COUNT = CLK_FREQ*1000; //1 ms counter
localparam DUTY_STEP =32'd100000; //duty step
localparam DUTY_MIN_VALUE =32'h6fffffff; //duty minimum value
localparam DUTY_MAX_VALUE =32'hffffffff; //duty maximum value
localparam IDLE =0; //IDLE state
localparam PWM_PLUS =1;//PWM duty plus state
localparam PWM_MINUS =2;//PWM duty minus state
localparam PWM_GAP =3;//PWM duty adjustment gap
wire pwm_out; //pwm output
reg[31:0] period; //pwm step value
reg[31:0] duty; //duty value
reg pwm_flag ; //duty value plus and minus flag, 0: plus; 1: minus
reg[3:0] state;
reg[31:0] timer; //duty adjustment counter
assign led =~pwm_out ;//led low active
always@(posedge clk ornegedge rst_n)
begin
if(rst_n ==1'b0)
begin
period <=32'd0;
timer <=32'd0;
duty <=32'd0;
pwm_flag <=1'b0;
state <= IDLE;
end
else
case(state)
IDLE:
begin
period <=32'd17179;//The pwm step value, pwm 200Hz(period = 200*2^32/50000000)
state <= PWM_PLUS;
duty <= DUTY_MIN_VALUE;
end
PWM_PLUS :
begin
if(duty > DUTY_MAX_VALUE - DUTY_STEP) //if duty is bigger than DUTY MAX VALUE minus DUTY_STEP , begin to minus duty value
begin
pwm_flag <=1'b1;
duty <= duty - DUTY_STEP ;
end
else
begin
pwm_flag