zoukankan      html  css  js  c++  java
  • 【ZYNQ Ultrascale+ MPSOC FPGA教程】第十一章 RS232实验

    原创声明:

    本原创教程由芯驿电子科技(上海)有限公司(ALINX)创作,版权归本公司所有,如需转载,需授权并注明出处。

    适用于板卡型号:

    AXU2CGA/AXU2CGB/AXU3EG/AXU4EV-E/AXU4EV-P/AXU5EV-E/AXU5EV-P /AXU9EG/AXU15EG

    实验Vivado工程为“rs232_test”。

    本章采用AN3485模块的RS232电路实现UART数据传输。

    1.模块介绍

    AN3845模块专门为工业现场应用设计的RS232/485/422通信模块。它包含一路RS232接口,2路RS485和2路RS422通信接口。配合开发板实现RS232、485和422的数据远程传输和通信。RS232、485和422接口分别采用MAX3232、MAX3485和MAX3490芯片作为电平转换芯片。模块留有一个40针的排母用于连接开发板,RS232接口为一个标准的DB9串口公座,通过串口线直接连接电脑或者其他设备; RS485和RS422接口采用接线端子跟外部连接,超远距离传输可达上千米,另外RS485和RS422接口部分带有正负15KV的ESD防护功能。

    AN3845模块实物照片如下:

    AN3845通信模块正面图

    1.1 模块参数说明

    以下为AN3485通信模块的详细参数:

    RS232接口

      • 一路标准的DB9公座串行接口;
      • 使用MAX3232作为RS232和 TTL电平的转换;
      • 传输率高达120Kbps数据通讯速率

    RS485接口

      • 两路RS485接口,采用3线的接线端子;
      • 使用MAX3485作为RS485和TTL的电平转换;
      • 工业级设计,抗干扰能力超强,同时采用有效的防雷设计;
      • 具有120欧匹配电阻,插上跳线帽即可使能匹配电阻,长距离传输时建议短接。
      • 支持多机通讯,允许接在最多128个设备的总线上
      • 传输率高达500Kbps数据通讯速率。

    RS422接口

      • 两路RS422接口,采用5线的接线端子;
      • 使用MAX3490作为RS422和TTL的电平转换;
      • 工业级设计,抗干扰能力超强,同时采用有效的防雷设计;
      • 具有120欧匹配电阻,插上跳线帽即可使能匹配电阻,长距离传输时建议短接。
      • 支持多机通讯,允许接在最多128个设备的总线上
      • 传输率高达500Kbps数据通讯速率。

    1.2 模块功能说明

    AN3485模块的RS232接口采用MAX3232芯片实现RS232和+3.3V TTL电平的转换。TTL电平的串口接收和发送信号(RXD, TXD)连接到40针的连接器上跟外面的FPGA芯片或者ARM芯片实现串口通信。RS232串口通信的最高速度为120kbps,RS232接口的原理设计图如下图所示。

    2. 程序设计

    本文所述的串口指异步串行通信,异步串行是指UART(Universal Asynchronous Receiver/Transmitter),通用异步接收/发送。本实验程序设计为每秒钟向串口发送”HELLO ALINX”,如果收到RXD接收的数据,再把接收的数据发送出去,实现回环的功能。

    2.1 异步串口通信协议

    消息帧从一个低位起始位开始,后面是7个或8个数据位,一个可用的奇偶位和一个或几个高位停止位。接收器发现开始位时它就知道数据准备发送,并尝试与发送器时钟频率同步。如果选择了奇偶校验,UART就在数据位后面加上奇偶位。奇偶位可用来帮助错误校验。在接收过程中,UART从消息帧中去掉起始位和结束位,对进来的字节进行奇偶校验,并将数据字节从串行转换成并行。UART 传输时序如下图所示:

    从波形上可以看出起始位是低电平,停止位和空闲位都是高电平,也就是说没有数据传输时是高电平,利用这个特点我们可以准确接收数据,当一个下降沿事件发生时,我们认为将进行一次数据传输。

    2.2 波特率

    常见的串口通信波特率有2400 、9600、115200等,发送和接收波特率必须保持一致才能正确通信。波特率是指1秒最大传输的数据位数,包括起始位、数据位、校验位、停止位。假如通信波特率设定为9600,那么一个数据位的时间长度是1/9600秒,本实验中的波特率由50MHz时钟产生。

    2.3 接收模块设计

    串口接收模块uart_rx是个参数化可配置模块,参数“CLK_FRE”定义接收模块的系统时钟频率,单位是Mhz,参数“BAUD_RATE”是波特率。接收状态机状态转换图如下:

    “S_IDLE”状态为空闲状态,上电后进入“S_IDLE”,如果信号“rx_pin”有下降沿,我们认为是串口的起始位,进入状态“S_START”,等一个BIT时间起始位结束后进入数据位接收状态“S_REC_BYTE”,本实验中数据位设计是8位,接收完成以后进入“S_STOP”状态,在“S_STOP”没有等待一个BIT周期,只等待了半个BIT时间,这是因为如果等待了一个周期,有可能会错过下一个数据的起始位判断,最后进入“S_DATA”状态,将接收到的数据送到其他模块。在这个模块我们提一点:为了满足采样定理,在接受数据时每个数据都在波特率计数器的时间中点进行采样,以避免数据出错的情况:

    //receive serial data bit data
    always@(posedge clk ornegedge rst_n)
    begin
    	if(rst_n ==1'b0)
    		rx_bits <=8'd0;
    	elseif(state == S_REC_BYTE && cycle_cnt == CYCLE/2-1)
    		rx_bits[bit_cnt]<= rx_pin;
    	else
    		rx_bits <= rx_bits;
    end
    

    注意:本实验没有设计奇偶校验位

    信号名称 方向 宽度(bit) 说明
    clk in 1 系统时钟
    rst_n in 1 异步复位,低电平复位
    rx_data out 8 接收到的串口数据(8位数据)
    rx_data_valid out 1 接收到的串口数据有效(高有效)
    rx_data_ready in 1 表示用户可以从接收模块接收数据,当rx_data_ready和rx_data_valid都为高时数据送出
    rx_pin in 1 串口接收数据输入

    串口接收模块uart_rx端口

    2.4 发送模块设计

    发送模块uart_tx设计和接收模块相似,也是使用状态机,状态转换图如下:

    上电后进入“S_IDLE”空闲状态,如果有发送请求,进入发送起始位状态“S_START”,起始位发送完成后进入发送数据位状态“S_SEND_BYTE”,数据位发送完成后进入发送停止位状态“S_STOP”,停止位发送完成后又进入空闲状态。在数据发送模块中,从顶层模块写入的数据直接传递给寄存器‘tx_reg’,并通过‘tx_reg’寄存器模拟串口传输协议在状态机的条件转换下进行数据传送:

    always@(posedge clk ornegedge rst_n)
    begin
    	if(rst_n ==1'b0)
    		tx_reg <=1'b1;
    	else
    		case(state)
    			S_IDLE,S_STOP:
    				tx_reg <=1'b1;
    			S_START:
    				tx_reg <=1'b0;
    			S_SEND_BYTE:
    				tx_reg <= tx_data_latch[bit_cnt];
    			default:
    				tx_reg <=1'b1;
    		endcase
    end
    
    信号名称 方向 宽度(bit) 说明
    clk in 1 系统时钟
    rst_n in 1 异步复位,低电平复位
    tx_data in 8 要发送的串口数据(8位数据)
    tx_data_valid in 1 发送的串口数据有效(高有效)
    tx_data_ready out 1 发送模块已准备好发送数据,用户可将tx_data_valid信号拉高发送数据给发送模块。当tx_data_ready和tx_data_valid都为高时数据被发送
    tx_pin out 1 串口发送数据发送

    串口发送模块uart_tx端口

    2.5 波特率的产生

    在发送和接收模块中,声明了参数CYCLE,也就是UART一个周期的计数值,当然计数是在50MHz时钟下进行的。用户只要设定好CLK_FRE和BAUD_RATE这两个参数即可。

    测试程序

    测试程序设计FPGA为1秒向串口发送一次“HELLO ALINX ”,不发送期间,如果接受到串口数据,直接把接收到的数据送到发送模块再返回。“ ”,在这里和C语言中表示一致,都是回车换行。

    测试程序分别例化了发送模块和接收模块,同时将参数传递进去,波特率设置为115200。

    always@(posedge sys_clk ornegedge rst_n)
    begin
    	if(rst_n ==1'b0)
    	begin
    		wait_cnt <=32'd0;
    		tx_data <=8'd0;
    		state <= IDLE;
    		tx_cnt <=8'd0;
    		tx_data_valid <=1'b0;
    	end
    	else
    	case(state)
    		IDLE:
    			state <= SEND;
    		SEND:
    		begin
    			wait_cnt <=32'd0;
    			tx_data <= tx_str;
    
    			if(tx_data_valid ==1'b1&& tx_data_ready ==1'b1&& tx_cnt <8'd12)//Send 12 bytes data
    			begin
    				tx_cnt <= tx_cnt +8'd1;//Send data counter
    			end
    			elseif(tx_data_valid && tx_data_ready)//last byte sent is complete
    			begin
    				tx_cnt <=8'd0;
    				tx_data_valid <=1'b0;
    				state <= WAIT;
    			end
    			elseif(~tx_data_valid)
    			begin
    				tx_data_valid <=1'b1;
    			end
    		end
    		WAIT:
    		begin
    			wait_cnt <= wait_cnt +32'd1;
    
    			if(rx_data_valid ==1'b1)
    			begin
    				tx_data_valid <=1'b1;
    				tx_data <= rx_data;// send uart received data
    			end
    			elseif(tx_data_valid && tx_data_ready)
    			begin
    				tx_data_valid <=1'b0;
    			end
    			elseif(wait_cnt >= CLK_FRE *1000000)// wait for 1 second
    				state <= SEND;
    		end
    		default:
    			state <= IDLE;
    	endcase
    end
    
    //combinational logic
    //Send "HELLO ALINX
    "
    always@(*)
    begin
    	case(tx_cnt)
    		8'd0:  tx_str <="H";
    		8'd1:  tx_str <="E";
    		8'd2:  tx_str <="L";
    		8'd3:  tx_str <="L";
    		8'd4:  tx_str <="O";
    		8'd5:  tx_str <=" ";
    		8'd6:  tx_str <="A";
    		8'd7:  tx_str <="L";
    		8'd8:  tx_str <="I";
    		8'd9:  tx_str <="N";
    		8'd10:  tx_str <="X";
    		8'd11:  tx_str <="
    ";
    		8'd12:  tx_str <="
    ";
    		default:tx_str <=8'd0;
    	endcase
    end
    uart_rx#
    (
    .CLK_FRE(CLK_FRE),
    .BAUD_RATE(115200)
    ) uart_rx_inst
    (
    .clk                        (sys_clk                  ),
    .rst_n                      (rst_n                    ),
    .rx_data                    (rx_data                  ),
    .rx_data_valid              (rx_data_valid            ),
    .rx_data_ready              (rx_data_ready            ),
    .rx_pin                     (uart_rx                  )
    );
    
    uart_tx#
    (
    .CLK_FRE(CLK_FRE),
    .BAUD_RATE(115200)
    ) uart_tx_inst
    (
    .clk                        (sys_clk                  ),
    .rst_n                      (rst_n                    ),
    .tx_data                    (tx_data                  ),
    .tx_data_valid              (tx_data_valid            ),
    .tx_data_ready              (tx_data_ready            ),
    .tx_pin                     (uart_tx                  )
    );
    

    3. 仿真

    这里我们添加了一个串口接收的激励程序vtf_uart_test.v文件,用来仿真uart串口接收。这里向串口模块的uart_rx发送0xa3的数据, 每位的数据按115200的波特率发送,1位起始位,8位数据位和1位停止位。

    仿真的结果如下,当程序接收到8位数据的时候,rx_data_valid有效,rx_data[7:0]的数据位a3。

    实验测试

    将AN3485模块插到J11扩展口上,这里使用了USB转RS232/RS485/RS422的设备,由于很多电脑都没有9针的串行接口,我们通过串口线与USB转串口设备连接,再通过USB连接到电脑上。如果电脑有串口的话,可以直接连接串口。

    在设备管理器中找到串口号”COM5”

    打开串口调试,端口选择“COM5”(根据自己情况选择),波特率设置115200,检验位选None,数据位选8,停止位选1,然后点击“打开串口”。此软件在例程文件夹下。

    打开串口以后,每秒可收到“HELLO ALINX”,在发送区输入框输入要发送的文字,点击“手动发送”,可以看到接收到自己发送的字符。

  • 相关阅读:
    DevExpress第三方控件之ASPxGridView
    单一职责原则(SRP)
    .NET 4 并行(多核)编程系列之一入门介绍
    .NET 分布式架构开发实战之二
    .NET 分布式架构开发实战之四
    .NET 分布式架构开发实战之三
    .NET 分布式架构开发实战之一
    .NET 4 并行(多核)编程系列之三
    .NET 4 并行(多核)编程系列之四
    .NET 分布式架构开发实战五
  • 原文地址:https://www.cnblogs.com/alinx/p/14297473.html
Copyright © 2011-2022 走看看