zoukankan      html  css  js  c++  java
  • [转] 研究云计算与海量数据处理方向建议看的论文列表

    本问转自:http://cloud.dlmu.edu.cn/cloudsite/index.php?action-viewnews-itemid-123-php-1

     

    [1] Zhou AY. Data intensive computing-challenges of data management techniques. Communications of CCF, 2009,5(7):50.53 (in Chinese with English abstract).
    [2] Cohen J, Dolan B, Dunlap M, Hellerstein JM, Welton C. MAD skills: New analysis practices for big data. PVLDB, 2009,2(2): 1481.1492.
    [3] Schroeder B, Gibson GA. Understanding failures in petascale computers. Journal of Physics: Conf. Series, 2007,78(1):1.11.
    [4] Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. In: Brewer E, Chen P, eds. Proc. of the OSDI. California: USENIX Association, 2004. 137.150.
    [5] Pavlo A, Paulson E, Rasin A, Abadi DJ, Dewitt DJ, Madden S, Stonebraker M. A comparison of approaches to large-scale data analysis. In: Cetintemel U, Zdonik SB, Kossmann D, Tatbul N, eds. Proc. of the SIGMOD. Rhode Island: ACM Press, 2009. 165.178.
    [6] Chu CT, Kim SK, Lin YA, Yu YY, Bradski G, Ng AY, Olukotun K. Map-Reduce for machine learning on multicore. In: Scholkopf B, Platt JC, Hoffman T, eds. Proc. of the NIPS. Vancouver: MIT Press, 2006. 281.288.
    [7] Wang CK, Wang JM, Lin XM, Wang W, Wang HX, Li HS, Tian WP, Xu J, Li R. MapDupReducer: Detecting near duplicates over massive datasets. In: Elmagarmid AK, Agrawal D, eds. Proc. of the SIGMOD. Indiana: ACM Press, 2010. 1119.1122.
    [8] Liu C, Guo F, Faloutsos C. BBM: Bayesian browsing model from petabyte-scale data. In: Elder JF IV, Fogelman-Soulié F, Flach PA, Zaki MJ, eds. Proc. of the KDD. Paris: ACM Press, 2009. 537.546.
    [9] Panda B, Herbach JS, Basu S, Bayardo RJ. PLANET: Massively parallel learning of tree ensembles with MapReduce. PVLDB, 2009,2(2):1426.1437.
    [10] Lin J, Schatz M. Design patterns for efficient graph algorithms in MapReduce. In: Rao B, Krishnapuram B, Tomkins A, Yang Q, eds. Proc. of the KDD. Washington: ACM Press, 2010. 78.85.
    [11] Zhang CJ, Ma Q, Wang XL, Zhou AY. Distributed SLCA-based XML keyword search by Map-Reduce. In: Yoshikawa M, Meng XF, Yumoto T, Ma Q, Sun LF, Watanabe C, eds. Proc. of the DASFAA. Tsukuba: Springer-Verlag, 2010. 386.397.
    [12] Stupar A, Michel S, Schenkel R. RankReduce—Processing K-nearest neighbor queries on top of MapReduce. In: Crestani F, Marchand-Maillet S, Chen HH, Efthimiadis EN, Savoy J, eds. Proc. of the SIGIR. Geneva: ACM Press, 2010. 13.18.
    [13] Wang GZ, Salles MV, Sowell B, Wang X, Cao T, Demers A, Gehrke J, White W. Behavioral simulations in MapReduce. PVLDB, 2010,3(1-2):952.963.
    [14] Gunarathne T, Wu TL, Qiu J, Fox G. Cloud computing paradigms for pleasingly parallel biomedical applications. In: Hariri S, Keahey K, eds. Proc. of the HPDC. Chicago: ACM Press, 2010. 460−469.
    [15] Delmerico JA, Byrnesy NA, Brunoz AE, Jonesz MD, Galloz SM, Chaudhary V. Comparing the performance of clusters, hadoop, and active disks on microarray correlation computations. In: Yang YY, Parashar M, Muralidhar R, Prasanna VK, eds. Proc. of the HiPC. Kochi: IEEE Press, 2009. 378−387.
    [16] Das S, Sismanis Y, Beyer KS, Gemulla R, Haas PJ, McPherson J. Ricardo: Integrating R and hadoop. In: Elmagarmid AK, Agrawal D, eds. Proc. of the SIGMOD. Indiana: ACM Press, 2010. 987−998.
    [17] Wegener D, Mock M, Adranale D, Wrobel S. Toolkit-Based high-performance data mining of large data on MapReduce clusters. In: Saygin Y, Yu JX, Kargupta H, Wang W, Ranka S, Yu PS, Wu XD, eds. Proc. of the ICDM Workshop. Washington: IEEE Computer Society, 2009. 296−301.
    [18] Kovoor G, Singer J, Lujan M. Building a Java Map-Reduce framework for multi-core architectures. In: Ayguade E, Gioiosa R, Stenstrom P, Unsal O, eds. Proc. of the HiPEAC. Pisa: HiPEAC Endowment, 2010. 87−98.
    [19] De Kruijf M, Sankaralingam K. MapReduce for the cell broadband engine architecture. IBM Journal of Research and Development, 2009,53(5):1−12.
    [20] Becerra Y, Beltran V, Carrera D, Gonzalez M, Torres J, Ayguade E. Speeding up distributed MapReduce applications using hardware accelerators. In: Barolli L, Feng WC, eds. Proc. of the ICPP. Vienna: IEEE Computer Society, 2009. 42−49.
    [21] Ranger C, Raghuraman R, Penmetsa A, Bradski G, Kozyrakis C. Evaluating MapReduce for multi-core and multiprocessor systems. In: Dally WJ, ed. Proc. of the HPCA. Phoenix: IEEE Computer Society, 2007. 13−24.
    [22] Ma WJ, Agrawal G. A translation system for enabling data mining applications on GPUs. In: Zhou P, ed. Proc. of the Supercomputing (SC). New York: ACM Press, 2009. 400−409.
    [23] He BS, Fang WB, Govindaraju NK, Luo Q, Wang TY. Mars: A MapReduce framework on graphics processors. In: Moshovos A, Tarditi D, Olukotun K, eds. Proc. of the PACT. Ontario: ACM Press, 2008. 260−269.
    [24] Stuart JA, Chen CK, Ma KL, Owens JD. Multi-GPU volume rendering using MapReduce. In: Hariri S, Keahey K, eds. Proc. of the MapReduce Workshop (HPDC 2010). New York: ACM Press, 2010. 841−848.
    [25] Hong CT, Chen DH, Chen WG, Zheng WM, Lin HB. MapCG: Writing parallel program portable between CPU and GPU. In: Salapura V, Gschwind M, Knoop J, eds. Proc. of the PACT. Vienna: ACM Press, 2010. 217−226.
    [26] Jiang W, Ravi VT, Agrawal G. A Map-Reduce system with an alternate API for multi-core environments. In: Chiba T, ed. Proc. of the CCGRID. Melbourne: IEEE Press, 2010. 84−93.
    [27] Liao HJ, Han JZ, Fang JY. Multi-Dimensional index on hadoop distributed file system. In: Xu ZW, ed. Proc. of the Networking, Architecture, and Storage (NAS). Macau: IEEE Computer Society, 2010. 240−249.
    [28] Zou YQ, Liu J, Wang SC, Zha L, Xu ZW. CCIndex: A complemental clustering index on distributed ordered tables for multi- dimensional range queries. In: Ding C, Shao ZY, Zheng R, eds. Proc. of the NPC. Zhengzhou: Springer-Verlag, 2010. 247−261.
    [29] Zhang SB, Han JZ, Liu ZY, Wang K, Feng SZ. Accelerating MapReduce with distributed memory cache. In: Huang XX, ed. Proc. of the ICPADS. Shenzhen: IEEE Press, 2009. 472−478.
    [30] Dittrich J, Quian′e-Ruiz JA, Jindal A, Kargin Y, Setty V, Schad J. Hadoop++: Making a yellow elephant run like a cheetah (without it even noticing). PVLDB, 2010,3(1-2):518−529.
    [31] Chen ST. Cheetah: A high performance, custom data warehouse on top of MapReduce. PVLDB, 2010,3(1-2):1459−1468.
    [32] Iu MY, Zwaenepoel W. HadoopToSQL: A MapReduce query optimizer. In: Morin C, Muller G, eds. Proc. of the EuroSys. Paris: ACM Press, 2010. 251−264.
    [33] Blanas S, Patel JM, Ercegovac V, Rao J, Shekita EJ, Tian YY. A comparison of join algorithms for log processing in MapReduce. In: Elmagarmid AK, Agrawal D, eds. Proc. of the SIGMOD. Indiana: ACM Press, 2010. 975−986.
    [34] Zhou MQ, Zhang R, Zeng DD, Qian WN, Zhou AY. Join optimization in the MapReduce environment for column-wise data store. In: Fang YF, Huang ZX, eds. Proc. of the SKG. Ningbo: EEE Computer Society, 2010. 97−104.
    [35] Afrati FN, Ullman JD. Optimizing joins in a Map-Reduce environment. In: Manolescu I, Spaccapietra S, Teubner J, Kitsuregawa M, Léger A, Naumann F, Ailamaki A, Ozcan F, eds. Proc. of the EDBT. Lausanne: ACM Press, 2010. 99−110.
    [36] Sandholm T, Lai K. MapReduce optimization using regulated dynamic prioritization. In: Douceur JR, Greenberg AG, Bonald T, Nieh J, eds. Proc. of the SIGMETRICS. Seattle: ACM Press, 2009. 299.310.
    [37] Hoefler T, Lumsdaine A, Dongarra J. Towards efficient MapReduce using MPI. In: Oster P, ed. Proc. of the EuroPVM/MPI. Berlin: Springer-Verlag, 2009. 240.249.
    [38] Nykiel T, Potamias M, Mishra C, Kollios G, Koudas N. MRShare: Sharing across multiple queries in MapReduce. PVLDB, 2010, 3(1-2):494.505.
    [39] Kambatla K, Rapolu N, Jagannathan S, Grama A. Asynchronous algorithms in MapReduce. In: Moreira JE, Matsuoka S, Pakin S, Cortes T, eds. Proc. of the CLUSTER. Crete: IEEE Press, 2010. 245.254.
    [40] Polo J, Carrera D, Becerra Y, Torres J, Ayguade E, Steinder M, Whalley I. Performance-Driven task co-scheduling for MapReduce environments. In: Tonouchi T, Kim MS, eds. Proc. of the IEEE Network Operations and Management Symp. (NOMS). Osaka: IEEE Press, 2010. 373.380.
    [41] Zaharia M, Konwinski A, Joseph AD, Katz R, Stoica I. Improving MapReduce performance in heterogeneous environments. In: Draves R, van Renesse R, eds. Proc. of the ODSI. Berkeley: USENIX Association, 2008. 29.42.
    [42] Xie J, Yin S, Ruan XJ, Ding ZY, Tian Y, Majors J, Manzanares A, Qin X. Improving MapReduce performance through data placement in heterogeneous hadoop clusters. In: Taufer M, Rünger G, Du ZH, eds. Proc. of the Workshop on Heterogeneity in Computing (IPDPS 2010). Atlanta: IEEE Press, 2010. 1.9.
    [43] Polo J, Carrera D, Becerra Y, Beltran V, Torres J, Ayguade E. Performance management of accelerated MapReduce workloads in heterogeneous clusters. In: Qin F, Barolli L, Cho SY, eds. Proc. of the ICPP. San Diego: IEEE Press, 2010. 653.662.
    [44] Papagiannis A, Nikolopoulos DS. Rearchitecting MapReduce for heterogeneous multicore processors with explicitly managed memories. In: Qin F, Barolli L, Cho SY, eds. Proc. of the ICPP. San Diego: IEEE Press, 2010. 121.130.
    [45] Jiang DW, Ooi BC, Shi L, Wu S. The performance of MapReduce: An in-depth study. PVLDB, 2010,3(1-2):472.483.
    [46] Berthold J, Dieterle M, Loogen R. Implementing parallel Google Map-Reduce in Eden. In: Sips HJ, Epema DHJ, Lin HX, eds. Proc. of the Euro-Par. Delft: Springer-Verlag, 2009. 990.1002.
    [47] Verma A, Zea N, Cho B, Gupta I, Campbell RH. Breaking the MapReduce stage barrier. In: Moreira JE, Matsuoka S, Pakin S, Cortes T, eds. Proc. of the CLUSTER. Crete: IEEE Press, 2010. 235.244.
    [48] Yang HC, Dasdan A, Hsiao RL, Parker DS. Map-Reduce-Merge simplified relational data processing on large clusters. In: Chan CY, Ooi BC, Zhou AY, eds. Proc. of the SIGMOD. Beijing: ACM Press, 2007. 1029.1040.
    [49] Seo SW, Jang I, Woo KC, Kim I, Kim JS, Maeng S. HPMR: Prefetching and pre-shuffling in shared MapReduce computation environment. In: Rana O, Tang FL, Kosar T, eds. Proc. of the CLUSTER. New Orleans: IEEE Press, 2009. 1.8.
    [50] Babu S. Towards automatic optimization of MapReduce programs. In: Kansal A, ed. Proc. of the ACM Symp. on Cloud Computing (SoCC). New York: ACM Press, 2010. 137.142.
    [51] Olston C, Reed B, Srivastava U, Kumar R, Tomkins A. Pig Latin: A not-so-foreign language for data processing. In: Wang JTL, ed. Proc. of the SIGMOD. Vancouver: ACM Press, 2008. 1099.1110.
    [52] Isard M, Budiu M, Yu Y, Birrell A, Fetterly D. Dryad: Distributed data-parallel programs from sequential building blocks. ACM SIGOPS Operating Systems Review, 2007,41(3):59.72.
    [53] Isard M, Yu Y. Distributed data-parallel computing using a high-level programming language. In: Cetintemel U, Zdonik SB, Kossmann D, Tatbul N, eds. Proc. of the SIGMOD. Rhode Island: ACM Press, 2009. 987.994.
    [54] Chaiken R, Jenkins B, Larson P, Ramsey B, Shakib D, Weaver S, Zhou JR. SCOPE: Easy and efficient parallel processing of massive data sets. PVLDB, 2008,1(2):1265.1276.
    [55] Condie T, Conway N, Alvaro P, Hellerstein JM, Gerth J, Talbot J, Elmeleegy K, Sears R. Online aggregation and continuous query support in MapReduce. In: Elmagarmid AK, Agrawal D, eds. Proc. of the SIGMOD. Indianapolis: ACM Press, 2010. 1115.1118.
    [56] Thusoo A, Sarma JS, Jain N, Shao Z, Chakka P, Anthony S, Liu H, Wyckoff P, Murthy R. Hive a warehousing solution over a MapReduce framework. PVLDB, 2009,2(2):938.941.
    [57] Ghoting A, Pednault E. Hadoop-ML: An infrastructure for the rapid implementation of parallel reusable analytics. In: Culotta A, ed. Proc. of the Large-Scale Machine Learning: Parallelism and Massive Datasets Workshop (NIPS 2009). Vancouver: MIT Press, 2009. 6.
    [58] Yang C, Yen C, Tan C, Madden S. Osprey: Implementing MapReduce-style fault tolerance in a shared-nothing distributed database. In: Li FF, Moro MM, Ghandeharizadeh S, Haritsa JR, Weikum G, Carey MJ, Casati F, Chang EY, Manolescu I, Mehrotra S, Dayal U, Tsotras VJ, eds. Proc. of the ICDE. Long Beach: IEEE Press, 2010. 657.668.
    [59] Abouzeid A, Bajda-Pawlikowski K, Abadi D, Silberschatz A, Rasin A. HadoopDB: An architectural hybrid of MapReduce and DBMS technologes for analytical workloads. PVLDB, 2009,2(1):922.933.
    [60] Abouzied A, Bajda-Pawlikowski K, Huang JW, Abadi DJ, Silberschatz A. HadoopDB in action: Building real world applications. In: Elmagarmid AK, Agrawal D, eds. Proc. of the SIGMOD. Indiana: ACM Press, 2010. 1111.1114.
    [61] Friedman E, Pawlowski P, Cieslewicz J. SQL/MapReduce: A practical approach to self describing, polymorphic, and parallelizable user defined functions. PVLDB, 2009,2(2):1402.1413.
    [62] Stonebraker M, Abadi D, DeWitt DJ, Maden S, Paulson E, Pavlo A, Rasin A. MapReduce and parallel DBMSs: Friends or foes? Communications of the ACM, 2010,53(1):64.71.
    [63] Dean J, Ghemawat S. MapReduce: A flexible data processing tool. Communications of ACM, 2010,53(1):72.77.
    [64] Xu Y, Kostamaa P, Gao LK. Integrating hadoop and parallel DBMS. In: Elmagarmid AK, Agrawal D, eds. Proc. of the SIGMOD. Indianapolis: ACM Press, 2010. 969.974.
    [65] Thusoo A, Shao Z, Anthony S, Borthakur D, Jain N, Sarma JS, Murthy R, Liu H. Data warehousing and analytics infrastructure at facebook. In: Elmagarmid AK, Agrawal D, eds. Proc. of the SIGMOD. Indianapolis: ACM Press, 2010. 1013.1020.
    [66] Mcnabb AW, Monson CK, Seppi KD. MRPSO: MapReduce particle swarm optimization. In: Ryan C, Keijzer M, eds. Proc. of the GECCO. Atlanta: ACM Press, 2007. 177.185.
    [67] Kang U, Tsourakakis CE, Faloutsos C. PEGASUS: A peta-scale graph mining system—Implementation and observations. In: Wang W, Kargupta H, Ranka S, Yu PS, Wu XD, eds. Proc. of the ICDM. Miami: IEEE Computer Society, 2009. 229.238.
    [68] Kang S, Bader DA. Large scale complex network analysis using the hybrid combination of a MapReduce cluster and a highly multithreaded system. In: Taufer M, Rünger G, Du ZH, eds. Proc. of the Workshops and Phd Forum (IPDPS 2010). Atlanta: IEEE Presss, 2010. 11.19.
    [69] Logothetis D, Yocum K. AdHoc data processing in the cloud. PVLDB, 2008,1(1):1472.1475.
    [70] Olston C, Bortnikov E, Elmeleegy K, Junqueira F, Reed B. Interactive analysis of WebScale data. In: DeWitt D, ed. Proc. of the CIDR. Asilomar: Online www.crdrdb.org, 2009.
    [71] Bose JH, Andrzejak A, Hogqvist M. Beyond online aggregation: Parallel and incremental data mining with online Map-Reduce. In: Tanaka K, Zhou XF, Zhang M, Jatowt A, eds. Proc. of the Workshop on Massive Data Analytics on the Cloud (WWW 2010). Raleigh: ACM Press, 2010. 3.
    [72] Kumar V, Andrade H, Gedik B, Wu KL. DEDUCE: At the intersection of MapReduce and stream processing. In: Manolescu I, Spaccapietra S, Teubner J, Kitsuregawa M, Léger A, Naumann F, Ailamaki A, Ozcan F, eds. Proc. of the EDBT. Lausanne: ACM Press, 2010. 657.662.
    [73] Abramson D, Dinh MN, Kurniawan D, Moench B, DeRose L. Data centric highly parallel debugging. In: Hariri S, Keahey K, eds. Proc. of the HPDC. Chicago: ACM Press, 2010. 119.129.
    [74] Morton K, Friesen A, Balazinska M, Grossman D. Estimating the progress of MapReduce pipelines. In: Li FF, Moro MM, Ghandeharizadeh S, et al., eds. Proc. of the ICDE. Long Beach: IEEE Press, 2010. 681.684.
    [75] Morton K, Balazinska M, Grossman D. ParaTimer: A progress indicator for MapReduce DAGs. In: Elmagarmid AK, Agrawal D, eds. Proc. of the SIGMOD. Indianapolis: ACM Press, 2010. 507.518.
    [76] Lang W, Patel JM. Energy management for MapReduce clusters. PVLDB, 2010,3(1-2):129.139.
    [77] Wieder A, Bhatotia P, Post A, Rodrigues R. Brief announcement: Modeling MapReduce for optimal execution in the cloud. In: Richa AW, Guerraoui R, eds. Proc. of the PODC. Zurich: ACM Press, 2010. 408.409.
    [78] Zheng Q. Improving MapReduce fault tolerance in the cloud. In: Taufer M, Rünger G, Du ZH, eds. Proc. of the Workshops and Phd Forum (IPDPS 2010). Atlanta: IEEE Presss, 2010. 1.6.
    [79] Groot S. Jumbo: Beyond MapReduce for workload balancing. In: Mylopoulos J, Zhou LZ, Zhou XF, eds. Proc. of the PhD Workshop (VLDB 2010). Singapore: VLDB Endowment, 2010. 7.12.
    [80] Chatziantoniou D, Tzortzakakis E. ASSET queries: A declarative alternative to MapReduce. SIGMOD Record, 2009,38(2):35.41.
    [81] Bu YY, Howe B, Balazinska M, Ernst MD. HaLoop: Efficient iterative data processing on large clusters. PVLDB, 2010,3(1-2): 285−296.
    [82] Wang HJ, Qin XP, Zhang YS, Wang S, Wang ZW. LinearDB: A relational approach to make data warehouse scale like MapReduce. In: Yu JX, Kim MH, Unland R, eds. Proc. of the DASFAA. Hong Kong: Springer-Verlag, 2011. 306−320.

  • 相关阅读:
    训练总结
    图论--最短路--SPFA模板(能过题,真没错的模板)
    图论--最短路-- Dijkstra模板(目前见到的最好用的)
    The 2019 Asia Nanchang First Round Online Programming Contest B Fire-Fighting Hero(阅读理解)
    关于RMQ问题的四种解法
    The Preliminary Contest for ICPC Asia Xuzhou 2019 徐州网络赛 K题 center
    The Preliminary Contest for ICPC Asia Xuzhou 2019 徐州网络赛 XKC's basketball team
    The Preliminary Contest for ICPC Asia Xuzhou 2019 徐州网络赛 D Carneginon
    ZOJ 3607 Lazier Salesgirl (枚举)
    ZOJ 3605 Find the Marble(dp)
  • 原文地址:https://www.cnblogs.com/aloe/p/2395719.html
Copyright © 2011-2022 走看看