zoukankan      html  css  js  c++  java
  • Triangle

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

     Notice

    Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

    Example

    Given the following triangle:

    [
         [2],
        [3,4],
       [6,5,7],
      [4,1,8,3]
    ]
    

    The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

    Analyse: top to bottom dynamic programming.  

    Runtime: 22ms

     1 class Solution {
     2 public:
     3     /**
     4      * @param triangle: a list of lists of integers.
     5      * @return: An integer, minimum path sum.
     6      */
     7     int minimumTotal(vector<vector<int> > &triangle) {
     8         // write your code here
     9         if (triangle.empty() || triangle[0].empty()) return 0;
    10         int m = triangle.size();
    11         vector<int> dp(m, INT_MAX);
    12         
    13         dp[0] = triangle[0][0];
    14         for (int i = 1; i < m; i++) {
    15             for (int j = i; j > 0; j--) 
    16                 dp[j] = min(dp[j - 1], dp[j]) + triangle[i][j];
    17             dp[0] += triangle[i][0];
    18         }
    19         
    20         int result = INT_MAX;
    21         for (int i = 0; i < m; i++)
    22             result = min(result, dp[i]);
    23         return result;
    24     }
    25 };

    Analyse: Bottom to top dynamic programming.

    Runtime: 38ms

     1 class Solution {
     2 public:
     3     /**
     4      * @param triangle: a list of lists of integers.
     5      * @return: An integer, minimum path sum.
     6      */
     7     int minimumTotal(vector<vector<int> > &triangle) {
     8         // write your code here
     9         if (triangle.empty() || triangle[0].empty()) return 0;
    10         int m = triangle.size();
    11         vector<int> dp = triangle.back();
    12         
    13         for (int i = m - 2; i >= 0; i--) {
    14             for (int j = 0; j <= i; j++) {
    15                 dp[j] = min(dp[j], dp[j + 1]) + triangle[i][j];
    16             }
    17         }
    18         return dp[0];
    19     }
    20 };
  • 相关阅读:
    [转]SQL Server 索引结构及其使用一
    平台无关的RICHTEXT实现
    谈谈时间管理陶哲轩
    BigNumCalculator
    关于构造和析构的几点拟人化思考
    ScaleForm十六戒言
    VAX对多种格式增加支持
    关于知识,经验,能力
    AutoTidyMyFiles
    王石语摘
  • 原文地址:https://www.cnblogs.com/amazingzoe/p/5838540.html
Copyright © 2011-2022 走看看