zoukankan      html  css  js  c++  java
  • Triangle

    Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

     Notice

    Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

    Example

    Given the following triangle:

    [
         [2],
        [3,4],
       [6,5,7],
      [4,1,8,3]
    ]
    

    The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

    Analyse: top to bottom dynamic programming.  

    Runtime: 22ms

     1 class Solution {
     2 public:
     3     /**
     4      * @param triangle: a list of lists of integers.
     5      * @return: An integer, minimum path sum.
     6      */
     7     int minimumTotal(vector<vector<int> > &triangle) {
     8         // write your code here
     9         if (triangle.empty() || triangle[0].empty()) return 0;
    10         int m = triangle.size();
    11         vector<int> dp(m, INT_MAX);
    12         
    13         dp[0] = triangle[0][0];
    14         for (int i = 1; i < m; i++) {
    15             for (int j = i; j > 0; j--) 
    16                 dp[j] = min(dp[j - 1], dp[j]) + triangle[i][j];
    17             dp[0] += triangle[i][0];
    18         }
    19         
    20         int result = INT_MAX;
    21         for (int i = 0; i < m; i++)
    22             result = min(result, dp[i]);
    23         return result;
    24     }
    25 };

    Analyse: Bottom to top dynamic programming.

    Runtime: 38ms

     1 class Solution {
     2 public:
     3     /**
     4      * @param triangle: a list of lists of integers.
     5      * @return: An integer, minimum path sum.
     6      */
     7     int minimumTotal(vector<vector<int> > &triangle) {
     8         // write your code here
     9         if (triangle.empty() || triangle[0].empty()) return 0;
    10         int m = triangle.size();
    11         vector<int> dp = triangle.back();
    12         
    13         for (int i = m - 2; i >= 0; i--) {
    14             for (int j = 0; j <= i; j++) {
    15                 dp[j] = min(dp[j], dp[j + 1]) + triangle[i][j];
    16             }
    17         }
    18         return dp[0];
    19     }
    20 };
  • 相关阅读:
    [原创]SQL经验
    DotNetBar技巧经验集合
    正则表达式的那些小角落
    [转]验证数字的正则表达式集
    项目受源代码管理。向源代码管理注册此项目时出错。建议不要对此项目进行任何更改
    DateGridView的一些技巧
    个人的CodeSmith和.NetTiers的学习心得及经验总结
    常用代码
    mysql 数据库常用命令
    XP2防火墙拒绝网上邻居访问的解决
  • 原文地址:https://www.cnblogs.com/amazingzoe/p/5838540.html
Copyright © 2011-2022 走看看