Given an array of integers A
and let n to be its length.
Assume Bk
to be an array obtained by rotating the array A
k positions clock-wise, we define a "rotation function" F
on A
as follow:
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]
.
Calculate the maximum value of F(0), F(1), ..., F(n-1)
.
Note:
n is guaranteed to be less than 105.
Example:
A = [4, 3, 2, 6] F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25 F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16 F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23 F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26 So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
Analyse:
0 1 2 3 4 5
5 0 1 2 3 4 f(0) - sumAll + N * A[0]
4 5 0 1 2 3 f(1) - sumAll + N * A[1]
3 4 5 0 1 2 f(2) - sumAll + N * A[2]
2 3 4 5 0 1 f(3) - sumAll + N * A[3]
1 2 3 4 5 0 f(4) - sumAll + N * A[4]
1 class Solution { 2 public: 3 int maxRotateFunction(vector<int>& A) { 4 if (A.empty()) return 0; 5 6 int sumAll = 0; 7 int previous = 0; 8 for (int i = 0; i < A.size(); i++) { 9 sumAll += A[i]; 10 previous += i * A[i]; 11 } 12 int result = previous; 13 14 for (int i = 0; i < A.size() - 1; i++) { 15 previous = previous - sumAll + A.size() * A[i]; 16 result = max(result, previous); 17 } 18 return result; 19 } 20 };