zoukankan      html  css  js  c++  java
  • Beautiful Arrangement

    Suppose you have N integers from 1 to N. We define a beautiful arrangement as an array that is constructed by these N numbers successfully if one of the following is true for the ith position (1 ≤ i ≤ N) in this array:

    1. The number at the ith position is divisible by i.
    2. i is divisible by the number at the ith position.

    Now given N, how many beautiful arrangements can you construct?

    Example 1:

    Input: 2
    Output: 2
    Explanation: 
    
    The first beautiful arrangement is [1, 2]:
    Number at the 1st position (i=1) is 1, and 1 is divisible by i (i=1).
    Number at the 2nd position (i=2) is 2, and 2 is divisible by i (i=2).
    The second beautiful arrangement is [2, 1]:
    Number at the 1st position (i=1) is 2, and 2 is divisible by i (i=1).
    Number at the 2nd position (i=2) is 1, and i (i=2) is divisible by 1.

    Note:

    1. N is a positive integer and will not exceed 15.
     1 public class Solution {
     2     private int count = 0;
     3     
     4     public int countArrangement(int N) {
     5         helper(N, 1, new boolean[N]);
     6         return count;
     7     }
     8     
     9     private void helper(int N, int level, boolean[] visited) {
    10         if (level > N) {
    11             count++;
    12             return;
    13         }
    14         
    15         for (int i = 1; i <= N; i++) {
    16             if ( !visited[i - 1] && (level % i == 0 || i % level == 0) ) {
    17                 visited[i - 1] = true;
    18                 helper(N, level + 1, visited); 
    19                 visited[i - 1] = false;
    20             }
    21         }
    22     }
    23 }
  • 相关阅读:
    在CentOS 6上安装Apache和PHP
    花10分钟看一看,少走30年的弯路
    IOS开发之UITabBarController与UINavigationController混合使用
    重构tableview!
    初学IOS之TableView
    关于mac下配置mysql心得
    类,对象,方法的
    shell脚本
    关于我
    机器学习&深度学习视频资料汇总
  • 原文地址:https://www.cnblogs.com/amazingzoe/p/6480120.html
Copyright © 2011-2022 走看看