zoukankan      html  css  js  c++  java
  • 数据分析的8种方法详解

    数据分析的8种方法详解

    对于具体的业务场景问题,我们该怎么办呢?我们以一个电子商务网站为例,用数据分析产品 GrowingIO 对该网站进行快速地数据采集、清晰和可视化展示,然后给大家分享这 8 种常见的数据分析方法。

    1 数字和趋势

    看数字、看趋势是最基础展示数据信息的方式。

    在数据分析中,我们可以通过直观的数字或趋势图表,迅速了解例如市场的走势、订单的数量、业绩完成的情况等等,从而直观的吸收数据信息,有助于决策的准确性和实时性。

    对于电子商务网站,流量是非常重要的指标。

    上图中,我们将网站的访问用户量(UV)和页面浏览量(PV)等指标汇汇聚到统一的数据看板(Dashboard),并且实时更新。

    这样的一个数据看板,核心数字和趋势一目了然,对于首席增长官来说一目了然。

    2 维度分解

    当单一的数字或趋势过于宏观时,我们需要通过不同的维度对于数据进行分解,以获取更加精细的数据洞察。

    在选择维度时,需要仔细思考其对于分析结果的影响。

    举个例子,当监测到网站流量异常时,可以通过拆分地区、访问来源、设备、浏览器等等维度,发现问题所在。

    3 用户分群

    针对符合某种特定行为或背景信息的用户,进行归类处理,是我们常常讲到的用户分群(segmentation )的手段。

    我们也可以通过提炼某一群用户的特定信息,创建该群体用户的画像。 例如访问购物网站、寄送地址在北京的用户,可以被归类为“北京”用户群体。

    而针对“北京”用户群体,我们可以进一步观察他们购买产品的频度、类别、时间,这样我们就创建出该用户群体的画像。

    在数据分析中,我们往往针对特定行为、特定背景的用户进行有针对性的用户运营和产品优化,效果会更加明显。

    上图中,我们通过 GrowingIO 的用户分群功能将一次促销活动中支付失败的用户挑选出来,然后推送相应的优惠券。

    这样精准的营销推广,可以大幅度提高用户支付的意愿和销售金额。

    4 转化漏斗

    绝大部分商业变现的流程,都可以归纳为漏斗。

    漏斗分析是我们最常见的数据分析手段之一,无论是注册转化漏斗,还是电商下单的漏斗。

    通过漏斗分析可以从先到后还原用户转化的路径,分析每一个转化节点的效率。  其中,我们往往关注三个要点: 第一,从开始到结尾,整体的转化效率是多少?  第二,每一步的转化率是多少?  第三,哪一步流失最多,原因在什么地方?流失的用户符合哪些特征?

    上图中注册流程分为 3 个步骤,总体转化率为45.5%;

    也就是说有 1000 个用户来到注册页面,其中 455 个成功完成了注册。

    但是我们不难发现第二步的转化率是 56.8% ,显着低于第一步 89.3% 和第三步转化率 89.7%,可以推测第二步注册流程存在问题。

    显而易见第二步的提升空间是最大的,投入回报比肯定不低;如果要提高注册转化率,我们应该优先解决第二步。

    5 行为轨迹

    关注行为轨迹,是为了真实了解用户行为。

    数据指标本身往往只是真实情况的抽象,例如,网站分析如果只看访问用户量(UV)和页面访问量(PV)这类指标,断然是无法全面理解用户如何使用你的产品。通过大数据手段,还原用户的行为轨迹,有助于增长团队关注用户的实际体验、发现具体问题,根据用户使用习惯设计产品、投放内容。

    上图中展示了一位用户在某电商网站上的详细行为轨迹,从官网到落地页,再到商品详情页,最后又回到官网首页。

    网站购买转化率低,以往的业务数据无法告诉你具体的原因;通过分析上面的用户行为轨迹,可以发现一些产品和运营的问题(比如是不是商品不匹配等等),从而为决策提供依据。

    6 留存分析

    在人口红利逐渐消褪的时代,留住一个老用户的成本要远远低于获取一个新用户。

    每一款产品,每一项服务,都应该核心关注用户的留存,确保做实每一个客户。

    我们可以通过数据分析理解留存情况,也可以通过分析用户行为或行为组与回访之间的关联,找到提升留存的方法。

    在 LinkedIn,增长团队通过数据发现,如果新用户进来后添加 5 个以上的联系人(上图红色线条),那么他/她在 LinkedIn 上留存要远远高于那些没有添加联系人(上图绿色和紫色的线条)的留存。

    这样,添加联系人称为 LinkedIn 留存新用户的最核心手段之一。除了需要关注整体用户的留存情况之外,市场团队可以关注各个渠道获取用户的留存度,或各类内容吸引来的注册用户回访率,产品团队关注每一个新功能对于用户的回访的影响等等,这些都是常见的留存分析场景。

    7 A/B 测试

    A/B 测试用来对比不同产品设计/算法对结果的影响。

    产品在上线过程中经常会使用 A/B 测试来测试不同产品或者功能设计的效果,市场和运营可以通过 A/B 测试来完成不同渠道、内容、广告创意的效果评估。

    举个例子,我们设计了两种不同的产品交互形式,通过比较实验组(A 组)和对照组(B 组)的访问时长和页面浏览量两个衡量指标,来评估哪一种交互形式更佳。要进行 A/B 测试有两个必备因素:

    第一,有足够的时间进行测试;

    第二,数据量和数据密度较高。

    因为当产品流量不够大的时候,做 A/B 测试得到统计结果是很难的。而像 LinkedIn 这样大体量的公司,每天可以同时进行上千个 A/B 测试。所以 A/B 测试往往在公司数据规模较大时使用会更加精准,更快得到统计的结果。

    8 数学建模

    当一个商业目标与多种行为、画像等信息有关联性时,我们通常会使用数学建模、数据挖掘的手段进行建模,预测该商业结果的产生。

    作为一家 SaaS 企业,当我们需要预测判断客户的流失时,可以通过用户的行为数据、公司信息、用户画像等数据建立流失模型。

    利用统计学的方式进行一些组合和权重计算,从而得知用户满足哪些行为之后流失的可能性会更高。

    我们常常说,不能度量,就无法增长,数据分析对于企业商业价值的提升有着至关重要的作用。

    当然,仅仅掌握单纯的理论还远远不够,实践出真知。数据分析的方法大家不妨在自己日常工作中,有分析相关项目里尝试使用,相信可以事半功倍,创造更多商业价值。

  • 相关阅读:
    PAT 1088. Rational Arithmetic
    PAT 1087. All Roads Lead to Rome
    PAT 1086. Tree Traversals Again
    PAT 1085. Perfect Sequence
    PAT 1084. Broken Keyboard
    PAT 1083. List Grades
    PAT 1082. Read Number in Chinese
    求最大公因数
    [转载]Latex文件转成pdf后的字体嵌入问题的解决
    [转载]Matlab有用的小工具小技巧
  • 原文地址:https://www.cnblogs.com/amengduo/p/9586273.html
Copyright © 2011-2022 走看看