本文实例讲述了Python实现利用最大公约数求三个正整数的最小公倍数。分享给大家供大家参考,具体如下:
在求解两个数的小公倍数的方法时,假设两个正整数分别为a、b的最小公倍数为d,最大公约数为c。存在这样的关系d=a*b/c。通过这个关系式,我们可以快速的求出三个正整数的最小公倍数。
def divisor(a,b):
x1 = input("input1:")
x2 = input("input2:")
x3 = input("input3:")
x0 = x1*x2/divisor(x1,x2)
x0 = x0*x3/divisor(x0,x3)
print "the least multiple is:%d"%x0
通过函数divisor求解两个数的最大公约数,然后进行两次求解最小公倍数即可知道三个正整数x1、x2、x3的最小公倍数。
其实可以通过divisor1函数求两个数的最小公倍数,再进行嵌套调用实现三个数的最小公倍数。
divisor1函数如下:
def divisor1(a,b):
嵌套过程如下:
x0 = divisor1(divisor1(x1,x2),x3)
可以求得三个正整数的最小公倍数。
Tip: a-bx=c,可知当一个数为a、b的公约数时,同时也是c的约数。
通过最大公约数即可得到最小公倍数的求解。
def min_multi(a,b):
求解质数的函数:
def isPrime(n):