zoukankan      html  css  js  c++  java
  • 数据的无量纲化处理和标准化处理的区别是什么

    数据的无量纲化处理和标准化处理的区别是什么

    请教:两者除了方法上有所不同外,在其他方面还有什么区别?

     


     

    解答:

    标准化处理方法是无量纲化处理的一种方法。除此之外,还有相对化处理方法(包括初值比处理)、函数化(功效系数)方法,等等。由于标准化处理方法可以与分布函数结合,所以应用比较广泛。如果指标有正、逆之分,功效系数方法也不错。初值比处理方法主要应用在灰色系统关联分析方面。

     


     

    标准化并不能解决正向化问题,如果要将数据正向化,需要其他无量钢化的方法,例如我要将数据全部变成0到100之间的数,那么可以用compute计算公式:


    (x-min(x))/(max(x)-min(x))*100

     


     

    数据的标准化处理

    (1)数据的中心化处理

    数据的中心化处理是指平移变换,即

    该变换可以使样本的均值变为 0,而这样的变换既不改变样本点间的相互位置,也

    不改变变量间的相关性。但变换后,却常常有许多技术上的便利。

    (2)数据的无量纲化处理

    在实际问题中,不同变量的测量单位往往是不一样的。为了消除变量的量纲效应,

    使每个变量都具有同等的表现力,数据分析中常用的消量纲的方法,是对不同的变量进

    行所谓的压缩处理,即使每个变量的方差均变成1,即

    还可以有其它消量纲的方法,如

    (3)标准化处理

    所谓对数据的标准化处理,是指对数据同时进行中心化-压缩处理,即

    方差分析

    用在哪方面 数理统计分析试验结果、鉴别各因素对结果影响程度的方法称为方差分析(Analysis Of Variance),记作ANOVA。

    我们已经作过两个总体均值的假设检验,如两台机床生产的零件尺寸是否相等,病

    人和正常人的某个生理指标是否一样。如果把这类问题推广一下,要检验两个以上总体

    的均值彼此是否相等,仍然用以前介绍的方法是很难做到的。(均值法)

    从用几种不同工艺制成的灯泡中,各抽取了若干个测量其寿命,要推断这几种工艺制成的灯泡寿命是否有显著差异;用几种化肥和几个小麦品种在若干块试验田里种植小麦,要推断不同的化肥和品种对产量有无显著影响。(方差分析)。

    模型

    方差分析一般用的显著性水平是:取α = 0.01,拒绝0 ,称因素A 的影响各水平的差异显著,取α = 0.01,不拒绝0 ,但取α = 0.05,拒绝0 ,称因

    素A的影响显著;取α = 0.05,不拒绝0 ,称因素A 无显著影响。

    例子  例1 为考察5 名工人的劳动生产率是否相同,记录了每人4 天的产量,并算出其平均值,如表3。你能从这些数据推断出他们的生产率有无显著差别吗?

    工人

    天 1 A

    1 256 254 250 248 236

    2 242 330 277 280 252

    3 280 290 230 305 220

    4 298 295 302 289 252

    平均产量269 292.25 264.75 280.5 240

    解 编写程序如下:

    x=[256 254 250 248 236

    242 330 277 280 252

    280 290 230 305 220

    298 295 302 289 252];

    p=anova1(x)

    求得p = 0.1109 >α = 0.05,故接受0 ,即5 名工人的生产率没有显著差异。

    曲线拟合(判断,估计,两者的关系)

    线性最小二乘法  已知一组(二维)数据,即平面上的n个点(xi , yi)  

    = 1,2,L,n,… 互不相同,寻求一个函数(曲线) (x),使f (x)在某种准则下与所有数据点最为接近,即曲线拟合得最好。

    模型

    例5 某乡镇企业1990-1996 年的生产利润如表5。

    表5

    年份 1990 1991 1992 1993 1994 1995 1996

    利润(万元) 70 122 144 152 174 196 202

    试预测1997 年和1998 年的利润。

    解 作已知数据的的散点图,

    x0=[1990 1991 1992 1993 1994 1995 1996];

    y0=[70 122 144 152 174 196 202];

    plot(x0,yo,’*’)

    发现该乡镇企业的年生产利润几乎直线上升。因此,我们可以用1 0 a x 作为

    拟合函数来预测该乡镇企业未来的年利润。编写程序如下:

    x0=[1990 1991 1992 1993 1994 1995 1996];

    y0=[70 122 144 152 174 196 202];

    a=polyfit(x0,y0,1)

    y97=polyval(a,1997)

    y98=polyval(a,1998)

    求得20 1 = , 4

    = −4.0705×10 ,1997 年的生产利润y97=233.4286,1998 年的生产利润为y98=253.9286       最小二乘优化(mtalab  cftool)

    回归分析

    用途  简单地说,回归分析就是对拟合问题作的统计分析。

    前面我们讲过曲线拟合问题。曲线拟合问题的特点是,根据得到的若干有关变量的

    一组数据,寻找因变量与(一个或几个)自变量之间的一个函数,使这个函数对那组数

    据拟合得最好。通常,函数的形式可以由经验、先验知识或对数据的直观观察决定,要

    作的工作是由数据数据分析培训

  • 相关阅读:
    Appium(一)安装
    Adb am/pm的使用
    RESTful API 设计指南
    选择物体生成Prefab
    C++网络开发Boost库
    Unity 猫眼效果
    React Native网络请求
    Unity高德LBS
    EasyTouch物体的旋转缩放
    Unity截屏分享朋友圈(微信)
  • 原文地址:https://www.cnblogs.com/amengduo/p/9587211.html
Copyright © 2011-2022 走看看