zoukankan      html  css  js  c++  java
  • robot 源码解读5【自定义的Dict】

    
    import sys
    from collections import MutableMapping
    
    from .platform import PY3, IRONPYTHON
    from .robottypes import is_dict_like, is_unicode
    
    
    def normalize(string, ignore=(), caseless=True, spaceless=True):
        """Normalizes given string according to given spec.
    
        By default string is turned to lower case and all whitespace is removed.
        Additional characters can be removed by giving them in ``ignore`` list.
        """
        empty = u'' if is_unicode(string) else b''
        if PY3 and isinstance(ignore, bytes):
            # Iterating bytes in Python3 yields integers.
            ignore = [bytes([i]) for i in ignore]
        if spaceless:
            string = empty.join(string.split())
        if caseless:
            string = lower(string)
            ignore = [lower(i) for i in ignore]
        # both if statements below enhance performance a little
        if ignore:
            for ign in ignore:
                if ign in string:
                    string = string.replace(ign, empty)
        return string
    
    
    # http://ironpython.codeplex.com/workitem/33133
    if IRONPYTHON and sys.version_info < (2, 7, 5):
        def lower(string):
            return ('A' + string).lower()[1:]
    else:
        def lower(string):
            return string.lower()
    
    
    class NormalizedDict(MutableMapping):
        """Custom dictionary implementation automatically normalizing keys."""
    
        def __init__(self, initial=None, ignore=(), caseless=True, spaceless=True):
            """Initialized with possible initial value and normalizing spec.
    
            Initial values can be either a dictionary or an iterable of name/value
            pairs. In the latter case items are added in the given order.
    
            Normalizing spec has exact same semantics as with the :func:`normalize`
            function.
            """
            self._data = {}
            self._keys = {}
            self._normalize = lambda s: normalize(s, ignore, caseless, spaceless)
            if initial:
                self._add_initial(initial)
    
        def _add_initial(self, initial):
            items = initial.items() if hasattr(initial, 'items') else initial
            for key, value in items:
                self[key] = value
    
        def __getitem__(self, key):
            return self._data[self._normalize(key)]
    
        def __setitem__(self, key, value):
            norm_key = self._normalize(key)
            self._data[norm_key] = value
            self._keys.setdefault(norm_key, key)
    
        def __delitem__(self, key):
            norm_key = self._normalize(key)
            del self._data[norm_key]
            del self._keys[norm_key]
    
        def __iter__(self):
            return (self._keys[norm_key] for norm_key in sorted(self._keys))
    
        def __len__(self):
            return len(self._data)
    
        def __str__(self):
            return '{%s}' % ', '.join('%r: %r' % (key, self[key]) for key in self)
    
        def __eq__(self, other):
            if not is_dict_like(other):
                return False
            if not isinstance(other, NormalizedDict):
                other = NormalizedDict(other)
            return self._data == other._data
    
        def __ne__(self, other):
            return not self == other
    
        def copy(self):
            copy = NormalizedDict()
            copy._data = self._data.copy()
            copy._keys = self._keys.copy()
            copy._normalize = self._normalize
            return copy
    
        # Speed-ups. Following methods are faster than default implementations.
    
        def __contains__(self, key):
            return self._normalize(key) in self._data
    
        def clear(self):
            self._data.clear()
            self._keys.clear()
    
    
  • 相关阅读:
    图论4-floyd
    。。。
    [LOJ10164]数字游戏
    KMP模板
    无向图割点模板
    tarjan有向图模板
    LCA倍增模板
    P2149 [SDOI2009]Elaxia的路线
    树的直径dp模板
    [暑假集训]Day4 T3 平板涂色
  • 原文地址:https://www.cnblogs.com/amize/p/14652424.html
Copyright © 2011-2022 走看看