zoukankan      html  css  js  c++  java
  • 无人机基于Matlab/Simulink的模型开发(连载一)

    “一切可以被控制的对象,都需要被数学量化”

    这是笔者从事多年研发工作得出的道理,无论是车辆控制,机器人控制,飞机控制,还是无人机控制,所有和机械运动相关的控制,如果不能被很好的数学量化,那么将不会被很好的控制。

    因为工作需要,笔者曾拜访过很多无人机研发公司,高校和研究所。发现大多数无人机研发公司的研发手段,相较于国外,还很初级。基本都是嵌入式开发居多,侧重于驱动的修改,飞行逻辑的修改。我认为这算不上是严格的无人机开发。因为大多数公司,都没有给被控对象(无人机),建立完整的数学模型。只是利用开源的框架,调整控制参数,没有完整的测试流程和测试指标。这样研发出来的飞机一致性很差,每一架飞机的飞行状态都不统一,完全不能满足于工业应用的场景。2018/2019年倒闭的无人机公司,大多数都是存在这种情况。

    不乏有些原本从事互联网软件开发的公司,转行从事无人机开发。在运动控制领域,和互联网软件开发的不同。有的时候互联网软件开发,不需要建立被控对象的数学模型。秉承设计模式,软件架构设计,协作编程,大规模软件集中测试,上线。在无人系统开发中,软件构架设计也是必不可少的,但是在测试的环节,如果没有建立数学模型,测试无从谈起,因为一般的真机测试,代价,效率和测试密集程度远远达不到要求。因为一个BUG会导致飞机坠毁,而任何一个新系统,往往存在大量的BUG。

    而在已经成熟工业界,比如汽车,飞机制造,电力电子,航天等领域大量采用了基于Matlab基于Simulink的模型开发手段。

    我们阿木实验室提供如下的课程体系和打包工具:

    课程将全面,细致地讲解如何基于模型(Simulink)的方法设计一套功能强大的飞控系统。本课程由多位一线资深飞控工程师设计,结合多年的基于模型的飞控开发经验,给大家提供最先进,最前沿的飞控开发体验。

    概述

    基于模型的开发将省去繁琐的代码编写步骤,只需要拖动几个模块,就像搭积木一般,轻松搭建您自己的飞控算法。飞控开发人员可以将更多的精力放在算法本身,而不需要过多关注代码实现的细节,这样将大大加快开发的效率,减少在代码编写过程中产生的错误。同时,基于模型的开发具有优秀的代码复用性。也就是说,已经设计好的功能模块,只需要简单的复制粘贴,就能轻松地应用到其它任何地方,免去了代码移植过程的繁琐。

    基于模型的开发另外一个强大的优势即在于“一次试验,多次仿真”的目的。结合Simulink强大的开环和闭环仿真系统,只需采集一次数据,便可通过仿真再现在真实世界中的实际表现。通过修改模型算法或参数,可以进行在线的数据仿真和调试,大大简化调试的难度。

    系统接口与总线设计

    在我们设计控制系统之前,首先要做的就是定义系统的输入/输出接口。在Simulink中,接口一般都是以总线的方式进行定义。可以将总线理解为C语言中的结构体,当把Simulink模型自动生成C代码后,也可以看到总线最终是用结构体来进行实现的。

    对于内环的姿态环控制器来说,输入总线设计如下:

    Command_Bus

    ElementTypeUnitMeaning
    resetuint8[0,1]为1复位控制器
    modeuint8[0,1]0:角度控制,1:角速度控制
    base_thint160~1000姿态环基础油门

    Reference_Bus

    ElementTypeUnitMeaning
    phi_ref_radsinglerad目标roll
    theta_ref_radsinglerad目标pitch
    psi_ref_radsinglerad目标yaw
    p_ref_radDssinglerad/s目标roll角速度
    q_ref_radDssinglerad/s目标pitch角速度
    r_ref_radDssinglerad/s目标yaw角速度

    States_Bus

    ElementTypeUnitMeaning
    phi_radsingleradroll当前值
    theta_radsingleradpitch当前值
    psi_radsingleradyaw当前值
    p_radDssinglerad/sroll角速度当前值
    q_radDssinglerad/spitch角速度当前值
    r_radDssinglerad/syaw角速度当前值

    输入接口总共有三个总线,分别是Command_BusReference_BusStates_Bus。其中Command_Bus是控制总线,用来对控制系统进行一些设置,如模式设置,复位等。Reference_Bus和States_Bus是目标信号总线和状态信号总线,可以理解为控制器的目标值和当前值。控制器的目的就是通过控制来使得当前值尽可能收敛到目标值。

    输入接口设计完了,接下来是输出接口。输出接口相比输入要简单很多,无非就是多路pwm指令输出。这里我们预留6个pwm输出接口,即最多可以支持6轴的控制,当面,也可以根据自己的需要,来进行修改。

    Control_Out_Bus

    ElementTypeUnitMeaning
    pwm1uin161000~2000电机1 pwm信号
    pwm2uin161000~2000电机2 pwm信号
    pwm3uin161000~2000电机3 pwm信号
    pwm4uin161000~2000电机4 pwm信号
    pwm5uin161000~2000电机5 pwm信号
    pwm6uin161000~2000电机6 pwm信号

    好了,现在接口都定义好了,那么下一步的问题就是如何在Simulink里面来实现这些接口定义了。

    其实,在Simulink中实现这些接口定义很简单。Simulink提供了一个Bus Editor的工具,只需要进行简单配置就可以定义任何你需要的接口或者总线了。

    下面一步一步地讲解一下总线的定义方法:

    • 首先打开控制模型,点击Edit->Bus Editor bus_editor_1

    • 这里我之前已经配置过了,所以能看到我已经定义过的总线。但是如果是自己第一次进行设计的话,这里应该是空的。可以点击如红色圈圈所示的add bus来添加Bus信号,这里我们总共需要添加4个Bus。三个输入总线和一个输出总线。Bus添加好后,在最右边的Property,修改Bus的名称。添加好Bus之后,我们下面就需要往Bus里面添加Element,即总线的元素。首先选定一个Bus,然后点击蓝色圈圈圈出的add element选项,即可添加元素。 bus_editor_2

    • 
      
    • 然后需要对Element进行配置。如图所示,我们一般只需要对Name,Data Type和Dimension三个选项进行配置即可。Dimension为变量的维度,如果我们的element需要配置为向量或者矩阵,那么就需要对Dimension进行配置。 bus_editor_3

    • 配置完成后,需要点击File->Export to File来将Bus的配置保存成.m还活着.mat文件。因为Bus的定义都是保存在工作空间的。当你下次打开matlab的时候,工作空间都是会被清除的,所以我们需要将我们的Bus定义保存成文件,这样,当下次打开matlab的时候,只需要load一下我们的.mat/.m文件,就能将我们定义的Bus再load进工作空间。

    微信公众号关注《阿木实验室》获取更多无人机开发测评信息,关注《阿木社区》获取更多学习课程信息。
    社区论坛地址:bbs.amovauto.com 参与讨论。

  • 相关阅读:
    Golang中使用set
    go 删除数组元素
    golang slice 简单排序
    WSGI 配置禁止反向DNS查找
    OpenStack Restful API框架介绍
    kubebuilder controller 资料学习
    package controllerutil
    JavaWeb开发好资料
    Hibernate3.6中文手册
    软件项目版本号的命名规则及格式
  • 原文地址:https://www.cnblogs.com/amovlab/p/11692723.html
Copyright © 2011-2022 走看看