zoukankan      html  css  js  c++  java
  • 利用矩母函数求独立随机变量之和的分布

    在求独立的随机变量之和的分布时,可用矩母函数法。

    1 矩母函数法

    定理 已知\(X_1,\ldots,X_n\)为独立的随机变量,各种的矩母函数为\(M_1,\ldots,M_n\)\(a_1,\ldots,a_n\)为常数,则\(Y=\sum_{i=1}^{n}a_i X_i\)的矩母函数为

    \[M_Y(t)=\text{E}[\exp(t\sum_{i=1}^{n}a_iX_i)]=\prod_{i=1}^{n}M_i(a_i t) \]

    2 案例

    2.1 Bernoulli分布

    \(X_1,\ldots,X_n\)为来自\(\text{Bernoulli}(p)\)分布的随机样本,则\(X_i\)的矩母函数为

    \[M(t)=1-p+p e^t \]

    那么\(Y=\sum_{i=1}^{n}X_i\)的矩母函数为

    \[M_Y(t)=(1-p+e^t)^n \]

    这正是\(\text{Binomial}(n,p)\)分布的矩母函数。

    2.2 正态分布

    \(X_i\sim N(\mu_i,\sigma^2_i)\)\(i=1,\ldots,n\),且相互独立,正态分布的矩母函数为

    \[M_X(t) = \exp(t\mu+\dfrac{1}{2}t^2 \sigma^2) \]

    那么\(Y=\sum_{i=1}^{n}a_i X_i\)的矩母函数为

    \[\begin{aligned} M_Y(t)=&\prod_{i=1}^{n}\exp\left(a_i\mu_i t+\dfrac{1}{2}a_i^2 \sigma_i^2 t^2\right)\\ =&\exp\left(t\sum_{i=1}^{n}a_i\mu_i+\dfrac{t^2}{2}\sum_{i=1}^{n}a_i^2 \sigma_i^2 \right) \end{aligned} \]

    因此\(Y\sim N(\sum\limits_{i=1}^{n}a_i\mu_i,\sum\limits_{i=1}^{n}a_i^2 \sigma_i^2)\)

  • 相关阅读:
    volume 方式使用 Secret【转】
    查看 Secret【转】
    用 k8s 管理机密信息【转】
    MySQL 如何使用 PV 和 PVC?【转】
    【docker问题】Client.Timeout exceeded while awaiting headers
    PV 动态供给【转】
    回收 PV【转】
    NFS PersistentVolume【转】
    PV & PVC【转】
    IO流中的常见问题
  • 原文地址:https://www.cnblogs.com/analysis101/p/14650336.html
Copyright © 2011-2022 走看看