zoukankan      html  css  js  c++  java
  • 动态规划 Common Subsequence

    描述

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 

    输入

    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. 

    输出

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    样例输入

    abcfbc abfcab
    programming contest
    abcd mnp

    样例输出

     4
     2
     0

    一道非常简单的动态规划题,菜鸡小白正在研究之中

    #include <iostream>
    #include <algorithm>
    #include <string>
    #define N 1001
    #include <cstring>
    using namespace std;
    int a[N][N];
    int main()
    {
        int n, m, j, k, i;
        string   x, y;
        while (cin >> x >> y)
        {
            n = x.length();
            m = y.length();
            for (i = 0; i < n; i++)
            {
                for (j = 0; j < m; j++)
                {
                    a[i][j] = 0;
                }
            }
            for (i = 1; i <= n; i++)
            {
                for (j = 1; j <= m; j++)
                {
                    if (x[i-1] == y[j-1])
                        a[i][j] = a[i - 1][j - 1] + 1;
                    else if (a[i - 1][j] > a[i][j - 1])
                        a[i][j] = a[i - 1][j];
                    else a[i][j] = a[i][j - 1];
                }
            }
            cout << a[n][m] << endl;
        }    
    }
  • 相关阅读:
    POJ-2478 Farey Sequence(欧拉函数)
    BZOJ-1103: [POI2007]大都市meg(树状数组)
    NOIP2016模拟 星际争霸(二分)
    HDU-1222 Wolf and Rabbit (欧几里得定理)
    POJ-2689 Prime Distance(线性筛法)
    FZU-2134 上车(树状数组)
    FZU-2236 第十四个目标(树状数组)
    2016年11月12日00:14:27
    FZU-1921 栀子花开(线段树)
    BZOJ3132 上帝造题的七分钟
  • 原文地址:https://www.cnblogs.com/andrew3/p/8999935.html
Copyright © 2011-2022 走看看