zoukankan      html  css  js  c++  java
  • 动态规划 Common Subsequence

    描述

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 

    输入

    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. 

    输出

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    样例输入

    abcfbc abfcab
    programming contest
    abcd mnp

    样例输出

     4
     2
     0

    一道非常简单的动态规划题,菜鸡小白正在研究之中

    #include <iostream>
    #include <algorithm>
    #include <string>
    #define N 1001
    #include <cstring>
    using namespace std;
    int a[N][N];
    int main()
    {
        int n, m, j, k, i;
        string   x, y;
        while (cin >> x >> y)
        {
            n = x.length();
            m = y.length();
            for (i = 0; i < n; i++)
            {
                for (j = 0; j < m; j++)
                {
                    a[i][j] = 0;
                }
            }
            for (i = 1; i <= n; i++)
            {
                for (j = 1; j <= m; j++)
                {
                    if (x[i-1] == y[j-1])
                        a[i][j] = a[i - 1][j - 1] + 1;
                    else if (a[i - 1][j] > a[i][j - 1])
                        a[i][j] = a[i - 1][j];
                    else a[i][j] = a[i][j - 1];
                }
            }
            cout << a[n][m] << endl;
        }    
    }
  • 相关阅读:
    最短路问题之Dijkstra算法
    最短路问题之Bellman-ford算法
    最小生成树之Kruskal(克鲁斯卡尔)算法
    二分图问题
    七桥问题与欧拉道路
    拓扑排序
    八连通块
    四连通检测
    USACO19DEC题解
    1206 雅礼集训D2题解
  • 原文地址:https://www.cnblogs.com/andrew3/p/8999935.html
Copyright © 2011-2022 走看看