zoukankan      html  css  js  c++  java
  • Linux驱动之按键驱动编写(中断方式)

    Linux驱动之按键驱动编写(查询方式)已经写了一个查询方式的按键驱动,但是查询方式太占用CPU,接下来利用中断方式编写一个驱动程序,使得CPU占有率降低,在按键空闲时调用read系统调用的进程可以休眠,还是以以下步骤编写:

    1、查看原理图,确定需要控制的IO端口

    2、查看芯片手册,确定IO端口的寄存器地址

    3、编写驱动代码

    4、确定应用程序功能,编写测试代码。

    5、编写Makefile,编译驱动代码与测试代码,在开发板上运行

    1、查看原理图,确定需要控制的IO端口

    打开原理图,确定需要控制的IO端口为GPF0、GPF2、GPG3、GPG11。可以看到它的中断号为IRQ_EINT0、IRQ_EINT2、IRQ_EINT11、IRQ_EINT19

    2、查看芯片手册,确定IO端口的寄存器地址,可以看到因为用了两组GPIO端口,所以它的基地址分别为0x56000050、0x56000060。中断方式的寄存器基地址为0x56000088、0x5600008c、0x56000090

    3、编写驱动代码,编写驱动代码的步骤如下:

     1)、编写出口、入口函数。代码如下,具体说明参考Linux驱动之LED驱动编写

    static int second_drv_init(void)
    {
        Secondmajor = register_chrdev(0, "buttons", &second_drv_ops);//注册驱动程序
    
        if(Secondmajor < 0)
            printk("failes 1 buttons_drv register
    ");
        
        second_drv_class = class_create(THIS_MODULE, "buttons");//创建类
        if(second_drv_class < 0)
            printk("failes 2 buttons_drv register
    ");
        second_drv_class_dev = class_device_create(second_drv_class, NULL, MKDEV(Secondmajor,0), NULL,"buttons");//创建设备节点
        if(second_drv_class_dev < 0)
            printk("failes 3 buttons_drv register
    ");
    
        
        gpfcon = ioremap(0x56000050, 16);//重映射
        gpfdat = gpfcon + 1;
        gpgcon = ioremap(0x56000060, 16);//重映射
        gpgdat = gpgcon + 1;
    
        printk("register buttons_drv
    ");
        return 0;
    }
    
    static void second_drv_exit(void)
    {
        unregister_chrdev(Secondmajor,"buttons");
    
        class_device_unregister(second_drv_class_dev);
        class_destroy(second_drv_class);
    
        iounmap(gpfcon);
        iounmap(gpgcon);
    
        printk("unregister buttons_drv
    ");
    }
    
    
    module_init(second_drv_init);
    module_exit(second_drv_exit);

    2)、 添加file_operations 结构体,这个是字符设备驱动的核心结构,所有的应用层调用的函数最终都会调用这个结构下面定义的函数

    static struct file_operations third_drv_ops = 
    {
        .owner   = THIS_MODULE,
        .open    =  third_drv_open,
        .read     = third_drv_read,
        .release = third_drv_close,//增加关闭函数
    };

    3)、分别编写file_operations 结构体下的open、read、release 函数。其中open函数主要将相应的IO端口配置成中断功能,并且向内核注册中断;read函数主要是在按键引脚电平未改变时休眠,然后按键引脚电平改变后,将按键值传给应用程序处理。(按键值的处理在中断处理程序中);relase函数的功能主要是从内核释放掉open函数注册的中断。程序如下:

    static int third_drv_open (struct inode * inode, struct file * file)
    {
        int ret;
        ret = request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, "s1", (void * )&pins_desc[0]);//注册一个外部中断S1,双边沿触发,dev_id为&pins_desc[0]
        if(ret)
        {
            printk("open failed 1
    ");
            return -1;
        }
        ret = request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, "s2", (void * )& pins_desc[1]);//注册一个外部中断S2,双边沿触发,dev_id为&pins_desc[1]
        if(ret)
        {
            printk("open failed 2
    ");
            return -1;
        }
        ret = request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, "s3", (void * )&pins_desc[2]);//注册一个外部中断S3,双边沿触发,dev_id为&pins_desc[2]
        if(ret)
        {
            printk("open failed 3
    ");
            return -1;
        }
        ret = request_irq(IRQ_EINT19, buttons_irq, IRQT_BOTHEDGE, "s4", (void * )&pins_desc[3]);//注册一个外部中断S4,双边沿触发,dev_id为&pins_desc[3]
        if(ret)
        {
            printk("open failed 4
    ");
            return -1;
        }
        
        return 0;
    }
    
    
    static int third_drv_close(struct inode * inode, struct file * file)
    {
        free_irq(IRQ_EINT0 ,(void * )&pins_desc[0]);//释放中断,根据IRQ_EINT0找到irq_desc结构。根据pins_desc[0]找到irq_desc->action结构
    
         free_irq(IRQ_EINT2 ,(void * )& pins_desc[1]);//释放中断,根据IRQ_EINT2找到irq_desc结构。根据pins_desc[2]找到irq_desc->action结构
    
        free_irq(IRQ_EINT11 ,(void * )&pins_desc[2]);//释放中断,根据IRQ_EINT11找到irq_desc结构。根据pins_desc[3]找到irq_desc->action结构
    
        free_irq(IRQ_EINT19 ,(void * )&pins_desc[3]);//释放中断,根据IRQ_EINT19找到irq_desc结构。根据pins_desc[4]找到irq_desc->action结构
    
        return 0;
    }
    
    static ssize_t third_drv_read(struct file * file, char __user * userbuf, size_t count, loff_t * off)
    {
        int ret;
    
        if(count != 1)
        {
            printk("read error
    ");
            return -1;
        }
    
        wait_event_interruptible(button_waitq, ev_press);//将当前进程放入等待队列button_waitq中,并且释放CPU进入睡眠状态
        
        ret = copy_to_user(userbuf, &key_val, 1);//将取得的按键值传给上层应用
        ev_press = 0;//按键已经处理可以继续睡眠
        
        if(ret)
        {
            printk("copy error
    ");
            return -1;
        }
        
        return 1;
    }

    4)、中断处理函数的编写,中断处理函数利用注册中断时传入的dev_id这个值来判断是哪个按键发生了中断,dev_iq被赋值为pin_desc结构,如下:

    struct pin_desc 
    {
        unsigned int pin;      //是哪个按键
        unsigned int key_val;  //按键的按键值
    };
    
    static struct pin_desc  pins_desc[4] = 
    {
        {S3C2410_GPF0,0x01},
        {S3C2410_GPF2,0x02},
        {S3C2410_GPG3,0x03},
        {S3C2410_GPG11,0x04}
    };

    取得哪个引脚发生的中断信息后,取得相应的引脚电平,然后确定按键值。接着将值传给key_val,再唤醒调用read的进程,将值直接拷贝给应用程序。具体函数如下

    static unsigned int key_val;//全局变量
     
    /*
      *0x01、0x02、0x03、0x04表示按键被按下
      */
      
    /*
      *0x81、0x82、0x83、0x84表示按键被松开
      */
    
    /*
      *利用dev_id的值为pins_desc来判断是哪一个按键被按下或松开
      */
    static irqreturn_t buttons_irq(int irq, void *dev_id)
    {
        unsigned int pin_val;
        struct pin_desc * pin_desc = (struct pin_desc *)dev_id;//取得哪个按键被按下的状态,dev_id是action->dev_id,即在注册中断时传入的&pin_desc[num]
        
        pin_val = s3c2410_gpio_getpin(pin_desc->pin);          //取得按键对应的IO口的电平状态
        
        if(pin_val) //按键松开
            key_val = 0x80 | pin_desc->key_val;
        else
            key_val = pin_desc->key_val;
    
    
        wake_up_interruptible(&button_waitq);   /* 唤醒休眠的进程,即调用read函数的进程 */
        ev_press = 1;    
        
        return IRQ_HANDLED;
    }

    5)、整体代码

    #include <linux/module.h>
    #include <linux/kernel.h>
    #include <linux/fs.h>
    #include <linux/init.h>
    #include <asm/io.h>        //含有iomap函数iounmap函数
    #include <asm/uaccess.h>//含有copy_from_user函数
    #include <linux/device.h>//含有类相关的处理函数
    #include <asm/arch/regs-gpio.h>//含有S3C2410_GPF0等相关的
    #include <linux/irq.h>    //含有IRQ_HANDLEDIRQ_TYPE_EDGE_RISING
    #include <asm-arm/irq.h>   //含有IRQT_BOTHEDGE触发类型
    #include <linux/interrupt.h> //含有request_irq、free_irq函数
    
    //#include <asm-armarch-s3c2410irqs.h>
    
    
    
    static struct class *third_drv_class;//
    static struct class_device *third_drv_class_dev;//类下面的设备
    static int thirdmajor;
    
    static unsigned long *gpfcon = NULL;
    static unsigned long *gpfdat = NULL;
    static unsigned long *gpgcon = NULL;
    static unsigned long *gpgdat = NULL;
    
    
    
    
    struct pin_desc 
    {
        unsigned int pin;      //是哪个按键
        unsigned int key_val;  //按键的按键值
    };
    
    static struct pin_desc  pins_desc[4] = 
    {
        {S3C2410_GPF0,0x01},
        {S3C2410_GPF2,0x02},
        {S3C2410_GPG3,0x03},
        {S3C2410_GPG11,0x04}
    };
    
    
    unsigned int ev_press;
    DECLARE_WAIT_QUEUE_HEAD(button_waitq);//注册一个等待队列button_waitq
    
    static unsigned int key_val;//全局变量
     
    /*
      *0x01、0x02、0x03、0x04表示按键被按下
      */
      
    /*
      *0x81、0x82、0x83、0x84表示按键被松开
      */
    
    /*
      *利用dev_id的值为pins_desc来判断是哪一个按键被按下或松开
      */
    static irqreturn_t buttons_irq(int irq, void *dev_id)
    {
        unsigned int pin_val;
        struct pin_desc * pin_desc = (struct pin_desc *)dev_id;//取得哪个按键被按下的状态,dev_id是action->dev_id,即在注册中断时传入的&pin_desc[num]
        
        pin_val = s3c2410_gpio_getpin(pin_desc->pin);          //取得按键对应的IO口的电平状态
        
        if(pin_val) //按键松开
            key_val = 0x80 | pin_desc->key_val;
        else
            key_val = pin_desc->key_val;
    
    
        wake_up_interruptible(&button_waitq);   /* 唤醒休眠的进程,即调用read函数的进程 */
        ev_press = 1;    
        
        return IRQ_HANDLED;
    }
    
    
    
    static int third_drv_open (struct inode * inode, struct file * file)
    {
        int ret;
        ret = request_irq(IRQ_EINT0, buttons_irq, IRQT_BOTHEDGE, "s1", (void * )&pins_desc[0]);//注册一个外部中断S1,双边沿触发,dev_id为&pins_desc[0]
        if(ret)
        {
            printk("open failed 1
    ");
            return -1;
        }
        ret = request_irq(IRQ_EINT2, buttons_irq, IRQT_BOTHEDGE, "s2", (void * )& pins_desc[1]);//注册一个外部中断S2,双边沿触发,dev_id为&pins_desc[1]
        if(ret)
        {
            printk("open failed 2
    ");
            return -1;
        }
        ret = request_irq(IRQ_EINT11, buttons_irq, IRQT_BOTHEDGE, "s3", (void * )&pins_desc[2]);//注册一个外部中断S3,双边沿触发,dev_id为&pins_desc[2]
        if(ret)
        {
            printk("open failed 3
    ");
            return -1;
        }
        ret = request_irq(IRQ_EINT19, buttons_irq, IRQT_BOTHEDGE, "s4", (void * )&pins_desc[3]);//注册一个外部中断S4,双边沿触发,dev_id为&pins_desc[3]
        if(ret)
        {
            printk("open failed 4
    ");
            return -1;
        }
        
        return 0;
    }
    
    
    static int third_drv_close(struct inode * inode, struct file * file)
    {
        free_irq(IRQ_EINT0 ,(void * )&pins_desc[0]);//释放中断,根据IRQ_EINT0找到irq_desc结构。根据pins_desc[0]找到irq_desc->action结构
    
         free_irq(IRQ_EINT2 ,(void * )& pins_desc[1]);//释放中断,根据IRQ_EINT2找到irq_desc结构。根据pins_desc[2]找到irq_desc->action结构
    
        free_irq(IRQ_EINT11 ,(void * )&pins_desc[2]);//释放中断,根据IRQ_EINT11找到irq_desc结构。根据pins_desc[3]找到irq_desc->action结构
    
        free_irq(IRQ_EINT19 ,(void * )&pins_desc[3]);//释放中断,根据IRQ_EINT19找到irq_desc结构。根据pins_desc[4]找到irq_desc->action结构
    
        return 0;
    }
    
    static ssize_t third_drv_read(struct file * file, char __user * userbuf, size_t count, loff_t * off)
    {
        int ret;
    
        if(count != 1)
        {
            printk("read error
    ");
            return -1;
        }
    
        wait_event_interruptible(button_waitq, ev_press);//将当前进程放入等待队列button_waitq中,并且释放CPU进入睡眠状态
        
        ret = copy_to_user(userbuf, &key_val, 1);//将取得的按键值传给上层应用
        ev_press = 0;//按键已经处理可以继续睡眠
        
        if(ret)
        {
            printk("copy error
    ");
            return -1;
        }
        
        return 1;
    }
    
    
    
    static struct file_operations third_drv_ops = 
    {
        .owner   = THIS_MODULE,
        .open    =  third_drv_open,
        .read     = third_drv_read,
        .release = third_drv_close,//增加关闭函数
    };
    
    static int third_drv_init(void)
    {
        thirdmajor = register_chrdev(0, "buttons", &third_drv_ops);//注册驱动程序
    
        if(thirdmajor < 0)
            printk("failes 1 buttons_drv register
    ");
        
        third_drv_class = class_create(THIS_MODULE, "buttons");//创建类
        if(third_drv_class < 0)
            printk("failes 2 buttons_drv register
    ");
        third_drv_class_dev = class_device_create(third_drv_class, NULL, MKDEV(thirdmajor,0), NULL,"buttons");//创建设备节点
        if(third_drv_class_dev < 0)
            printk("failes 3 buttons_drv register
    ");
    
        
        gpfcon = ioremap(0x56000050, 16);//重映射
        gpfdat = gpfcon + 1;
        gpgcon = ioremap(0x56000060, 16);//重映射
        gpgdat = gpgcon + 1;
    
        printk("register buttons_drv
    ");
        return 0;
    }
    
    static void third_drv_exit(void)
    {
        unregister_chrdev(thirdmajor,"buttons");
    
        class_device_unregister(third_drv_class_dev);
        class_destroy(third_drv_class);
    
        iounmap(gpfcon);
        iounmap(gpgcon);
    
        printk("unregister buttons_drv
    ");
    }
    
    
    module_init(third_drv_init);
    module_exit(third_drv_exit);
    
    MODULE_LICENSE("GPL");

    4、确定应用程序功能,编写测试代码。

    测试程序实现四个按键中有一个按键按下时,打印出这个按键的按键值。./third_test。直接看代码

    #include <sys/types.h>
    #include <sys/stat.h>
    #include <fcntl.h>
    #include <stdio.h>
    
    /*
      *usage ./buttonstest
      */
    int main(int argc, char **argv)
    {
        int fd;
        char* filename="dev/buttons";
       unsigned char key_val;
      unsigned long cnt=0;
        fd = open(filename, O_RDWR);//打开dev/firstdrv设备文件
        if (fd < 0)//小于0说明没有成功
        {
            printf("error, can't open %s
    ", filename);
            return 0;
        }
        
        if(argc !=1)
        {
            printf("Usage : %s ",argv[0]);
         return 0;
        }
    
      while(1)
      {
         read(fd, &key_val, 1);
         printf("key_val: %x
    ",key_val);
      }
        
       return 0;
    }

    5、编写Makefile,编译驱动代码与测试代码,在开发板上运行

    Makefile源码如下:

    KERN_DIR = /work/system/linux-2.6.22.6
    
    all:
            make -C $(KERN_DIR) M=`pwd` modules //M='pwd'表示当前目录。这句话的意思是利用内核目录下的Makefile规则来编译当前目录下的模块
    
    clean:
            make -C $(KERN_DIR) M=`pwd` modules clean
            rm -rf modules.order
    
    obj-m   +=third_drv.o//调用内核目录下Makefile编译时需要用到这个参数

    1)、然后在当前目录下make后编译出third_drv.ko文件

    2)、arm-linux-gcc -o third_test third_test.c编译出third_test测试程序

    3)、cp third_drv.ko third_test /work/nfs_root将编译出来的文件拷贝到开发板挂接的网络文件系统上

    4)、执行insmod third_drv.ko加载驱动。

    5)、./third_test测试程序,按下按键,成功打印按键值,用top命令查看应用程序发现third_test程序占用了0%的CPU资源,驱动程序相比查询方式的驱动改善了。

  • 相关阅读:
    (转)Android之内存泄漏调试学习与总结
    (转)linux下bluetooth编程(七)SDP协议
    (转)Linux下Bluez的编程实现
    (转)linux下bluetooth编程(八)SDP层编程
    (转)linux下bluetooth编程(二)blueZ协议栈
    (转)linux下bluetooth编程(六)L2CAP层编程实例
    (转)linux下bluetooth编程(五)bluetooth与socket
    (转)linux下bluetooth编程(四)L2CAP层编程
    (转)linux下bluetooth编程(一)基础概念
    (转)linux下bluetooth编程(三)HCI层编程
  • 原文地址:https://www.cnblogs.com/andyfly/p/9479763.html
Copyright © 2011-2022 走看看