zoukankan      html  css  js  c++  java
  • stm32定时器时钟以及中间对齐模式

    在永磁同步电机的控制中,需要对电机的三相定子施加一定的电压,才能控制电机转动。现在用的较多的是SVPWM(SVPWM的具体原理会在后面另写一篇博客说明),要想产生SVPWM波形,需要控制的三相电压呈如下形式,即A、B、C三相的电压是中间对齐的,这就需要用到stm32定时器的中间对齐模式了。

    1、stm32的时钟树

    stm32的时钟树如下图所示,简单介绍一下stm32时钟的配置过程。以外部时钟作为时钟源为例。HSE代表外部时钟(假设为8M)、SYSCLK为系统时钟,经过倍频器之后变成168M、SYSCLK经过AHB预分频器(假设分频系数为1)后变成HCLK时钟等于系统时钟SYSCLKHCLK即AHB外部总线时钟,经过APB预分频器分出APB1时钟(分频系数为2,低速设备SYSCLK/4)与APB2时钟(分频系数为1,高速设备SYSCLK/2

    HSE->SYSCLK->HCLK->APB1、APB2。

     针对stm32f427的配置源码如下

    static void SetSysClock(void)
    {
    #if defined (STM32F40_41xxx) || defined (STM32F427_437xx) || defined (STM32F429_439xx) || defined (STM32F401xx)
    /******************************************************************************/
    /*            PLL (clocked by HSE) used as System clock source                */
    /******************************************************************************/
      __IO uint32_t StartUpCounter = 0, HSEStatus = 0;
      
      /* Enable HSE */
      RCC->CR |= ((uint32_t)RCC_CR_HSEON);
     
      /* Wait till HSE is ready and if Time out is reached exit */
      do
      {
        HSEStatus = RCC->CR & RCC_CR_HSERDY;
        StartUpCounter++;
      } while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));
    
      if ((RCC->CR & RCC_CR_HSERDY) != RESET)
      {
        HSEStatus = (uint32_t)0x01;
      }
      else
      {
        HSEStatus = (uint32_t)0x00;
      }
    
      if (HSEStatus == (uint32_t)0x01)
      {
        /* Select regulator voltage output Scale 1 mode */
        RCC->APB1ENR |= RCC_APB1ENR_PWREN;
        PWR->CR |= PWR_CR_VOS;
    
        /* HCLK = SYSCLK / 1*/
        RCC->CFGR |= RCC_CFGR_HPRE_DIV1;//AHB时钟  
    
    #if defined (STM32F40_41xxx) || defined (STM32F427_437xx) || defined (STM32F429_439xx)      
        /* PCLK2 = HCLK / 2*/
        RCC->CFGR |= RCC_CFGR_PPRE2_DIV2;//APB2时钟
        
        /* PCLK1 = HCLK / 4*/
        RCC->CFGR |= RCC_CFGR_PPRE1_DIV4;//APB1时钟
    #endif /* STM32F40_41xxx || STM32F427_437x || STM32F429_439xx */
    
       
        /* Configure the main PLL */
        RCC->PLLCFGR = PLL_M | (PLL_N << 6) | (((PLL_P >> 1) -1) << 16) |
                       (RCC_PLLCFGR_PLLSRC_HSE) | (PLL_Q << 24);
    
        /* Enable the main PLL */
        RCC->CR |= RCC_CR_PLLON;
    
        /* Wait till the main PLL is ready */
        while((RCC->CR & RCC_CR_PLLRDY) == 0)
        {
        }
       
    #if defined (STM32F427_437xx) || defined (STM32F429_439xx)
        /* Enable the Over-drive to extend the clock frequency to 180 Mhz */
        PWR->CR |= PWR_CR_ODEN;
        while((PWR->CSR & PWR_CSR_ODRDY) == 0)
        {
        }
        PWR->CR |= PWR_CR_ODSWEN;
        while((PWR->CSR & PWR_CSR_ODSWRDY) == 0)
        {
        }      
        /* Configure Flash prefetch, Instruction cache, Data cache and wait state */
        FLASH->ACR = FLASH_ACR_PRFTEN | FLASH_ACR_ICEN |FLASH_ACR_DCEN |FLASH_ACR_LATENCY_5WS;
    #endif /* STM32F427_437x || STM32F429_439xx  */
    
    
        /* Select the main PLL as system clock source */
        RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
        RCC->CFGR |= RCC_CFGR_SW_PLL;
    
        /* Wait till the main PLL is used as system clock source */
        while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS ) != RCC_CFGR_SWS_PLL);
        {
        }
      }
      else
      { /* If HSE fails to start-up, the application will have wrong clock
             configuration. User can add here some code to deal with this error */
      }
    }

    2、stm32定时器的时钟

     stm32定时器分为高级定时器(TIM1与TIM8)、通用定时器(TIM2-TIM5、TIM9-TIM14)、基本定时器(TIM6、TIM7)。不同的定时器使用不同的时钟。

    其中TIM1、TIM8、TIM10、TIM11使用的是APB2时钟,而其余定时器使用的是APB1时钟。

    在stm32手册中有这么一段话

     根据前面RCC配置可以知道TIM1、TIM8、TIM10、TIM11使用的时钟频率为SYSCLK,其他定时器使用的时钟频率为SYSCLK/2

    3、stm32定时器1的中间对齐模式

    对齐模式的图示如下图所示,可以看到在中心对齐模式下产生的PWM波形的周期比实际计数周期要大1倍,所以假设要使用中间对齐模式,并且需要产生的PWM波频率为20K,那么对应的定时器时基应该设为40K。

    在SVPWM波的产生过程中使用的是定时器1的3对互补的PWM通道,它的配置如下

    static void TIM1_Configuration(void)
    {    
        TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
        TIM_OCInitTypeDef  TIM_OCInitStructure;
        TIM_BDTRInitTypeDef TIM_BDTRInitStructure;
        
        RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);//使能定时器1时钟
        
        Time1_Period =  (SystemCoreClock / 40000 );//定时器频率为APB2频率的2倍=HCLK 自动重装载为40K,最大值为4200
        
        Limit_Pluse_Max_Value = Time1_Period * 0.95;
        
      /* TIM1 Peripheral Configuration */ 
        
      TIM_DeInit(TIM1);
    
      /* Time Base configuration */
        //配置定时器的计数方式为中间对齐方式,所以产生的PWM波的频率为20K
      TIM_TimeBaseStructure.TIM_Prescaler = 0x0;
      TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_CenterAligned1;//TIM_CounterMode_Up;TIM_CounterMode_CenterAligned1
      TIM_TimeBaseStructure.TIM_Period = Time1_Period - 1;//PERIOD;//定时器时基40K
      TIM_TimeBaseStructure.TIM_ClockDivision = 0x0;
      TIM_TimeBaseStructure.TIM_RepetitionCounter = 0x0;
    
      TIM_TimeBaseInit(TIM1,&TIM_TimeBaseStructure);
    
      /* Channel 1, 2,3 and 4 Configuration in PWM mode */
      TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; 
      TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; 
      TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;                  
      TIM_OCInitStructure.TIM_Pulse = Time1_Period / 2;//CCR1_Val; //占空比50%
      TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;//TIM_OCPolarity_Low;TIM_OCPolarity_High;
      TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High;//TIM_OCNPolarity_Low;TIM_OCNPolarity_High;         
      TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset;//TIM_OCIdleState_Set;
      TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset;
        
      TIM_OC1Init(TIM1,&TIM_OCInitStructure); 
    
      TIM_OCInitStructure.TIM_Pulse = Time1_Period / 2;//CCR2_Val;//占空比50%
      TIM_OC2Init(TIM1,&TIM_OCInitStructure);
    
      TIM_OCInitStructure.TIM_Pulse = Time1_Period / 2;//CCR3_Val;//占空比50%
      TIM_OC3Init(TIM1,&TIM_OCInitStructure);
        
        
    //   /* Channel 4 Configuration in OC */
    //   TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2;
    //   TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
    //   TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Disable;
    //   TIM_OCInitStructure.TIM_Pulse = 4000;//Time1_Period / 2;            //1500;//PERIOD - 1; 
    //   
    //   TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; 
    //   TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low;         
    //   TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset;
    //   TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset;            
      
    //   TIM_OC4Init(TIM1,&TIM_OCInitStructure);    
        
        /* TIMx->CCMR1的bit3设为1:输出比较寄存器预装载使能 */  // PWM占空比改变只在更新事件时生效
      TIM_OC1PreloadConfig(TIM1,TIM_OCPreload_Enable);//A相
        
        /* TIMx->CCMR1的bit11设为1:输出比较寄存器预装载使能 */ // PWM占空比改变只在更新事件时生效
      TIM_OC2PreloadConfig(TIM1,TIM_OCPreload_Enable);//B相
        
        /* TIMx->CCMR2的bit3设为1:输出比较寄存器预装载使能 */  // PWM占空比改变只在更新事件时生效
      TIM_OC3PreloadConfig(TIM1,TIM_OCPreload_Enable);//C相
    
    //   TIM_OC4PreloadConfig(TIM1,TIM_OCPreload_Enable);//电磁铁
        
      /* Automatic Output enable, Break, dead time and lock configuration*/
      TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable;
      TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable;
      TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1; 
      TIM_BDTRInitStructure.TIM_DeadTime = 50;
      TIM_BDTRInitStructure.TIM_Break = TIM_Break_Disable;//TIM_Break_Enable;
      TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High;
      TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Disable;//TIM_AutomaticOutput_Enable;
    
      TIM_BDTRConfig(TIM1,&TIM_BDTRInitStructure);
        
        TIM_SelectOutputTrigger(TIM1,TIM_TRGOSource_Update);
        
      /* TIM1 counter enable */
    //   TIM_Cmd(TIM1,ENABLE);
    
      /* Main Output Enable */
       TIM_CtrlPWMOutputs(TIM1,ENABLE);//由于使用中间对齐模式,PWM频率为20K
        
      //TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE);//定时器1的溢出中断
    }
  • 相关阅读:
    各种编译器
    C99特性
    动态内存分配
    MDK C++编程说明
    C++类的大小计算
    WPF DataGrid添加编号列
    WPF实现打印用户界面功能
    WPF DataGrid 导出Excel
    知识点总结
    Winfrom控件使用
  • 原文地址:https://www.cnblogs.com/andyfly/p/9761264.html
Copyright © 2011-2022 走看看