zoukankan      html  css  js  c++  java
  • Collaborative Index Embedding for Image Retrieval

    最近看了一篇比较好的文章,效果很好,简单记录一下。

    这篇文章的核心思想是,融合两种不同类型的特征。文章中用的是SIFT和CNN提取的特征。还是神经大法好啊。

    第一步就是建立两种不同特征的索引,文章用的是BoW类似的,为了加快检索速度,文章中使用了一种称为sparse boost的技术。简单说就是对每个特征向量求出它的协方差矩阵,按照从大到小的顺序进行排序,然后设置一个阈值,求出前k个正好大于这个阈值的索引值,其他的索引值全部置0。

    第二步,构建模型。

    对于每个特征向量,首先构建一个一模一样的向量,来标识哪些非0元素的位置。

    然后找到这个向量最近邻的2个或者是几个向量,同时在找到这最近邻的2个或者是几个最近邻向量,这是两个步骤,用来圈定这个向量周围的向量,也就是用来表示是对这些向量进行操作。

    接着用用一个指示函数来标定这些特征向量。

    最后按照论文中给定的公式进行最后的计算就可以了。

    不过,论文并没有给出相应的源码,自己实现有点复杂。不过,论文中给出的效果是蛮好的。

    总结来讲,这篇文章立意挺新,优化函数也不是很麻烦,效果挺好,可谓是一篇不错的文章,忘了说了,这篇文章发表在PAMI上面。

  • 相关阅读:
    JavaScript学习笔记(七) 跨域问题
    JavaScript学习笔记(六) 异步问题
    JavaScript学习笔记(五) jQuery
    查看Wii的系统版本信息
    运行你的应用
    创建一个Android工程
    构建你的第一个App
    Android Studio开发环境部署
    酷派D530刷机指引
    酷派D530刷机指引之民间ROM
  • 原文地址:https://www.cnblogs.com/andyniu/p/7762056.html
Copyright © 2011-2022 走看看