zoukankan      html  css  js  c++  java
  • ACM学习历程—HDU1028 Ignatius and the Princess(组合数学)

    Ignatius and the Princess  

    Description

           "Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.       
    "The second problem is, given an positive integer N, we define an equation like this:          N=a[1]+a[2]+a[3]+...+a[m];          a[i]>0,1<=m<=N;        My question is how many different equations you can find for a given N.        For example, assume N is 4, we can find:          4 = 4;          4 = 3 + 1;          4 = 2 + 2;          4 = 2 + 1 + 1;          4 = 1 + 1 + 1 + 1;        so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"

    Input

    The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file. 

    Output

    For each test case, you have to output a line contains an integer P which indicate the different equations you have found.        

    Sample Input

    4
    10
    20 

    Sample Output

    5
    42
    627
     

    刚看到题目是k个数相加为n的题目,第一反应是求1到n元的一次不定方程求解,用插板的方法就能求出通项,但是考虑到这k元未知数是没有先后关系的,也就是说任意(a,a)和(a,a)是相同的。于是不能这样考虑。
    然后考虑到每组解必然有个最大值,于是设了这样一个函数(或者数组)f(n,k),表示和为n且最大数为k的上述元数不定的方程的解的个数。这样一来题目要求求得就是f(n,1)到f(n,n)的和了。
    然后我们考虑,对于f(n,k)如果去掉最大值k,那么其子问题就是求和为n-k且最大值小于等于k的上述方程的解的个数。 于是得到递推方程:
    但是考虑到n-k或许会比k还要小,于是更新递推方程为:
    然后打表求f(n,k)即可,此外用f(n,0)来存所有f(n,i)的和。用数组实现。


    代码:
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <set>
    #include <map>
    #include <queue>
    #include <string>
    #include <vector>
    #define inf 0x3fffffff
    
    using namespace std;
    
    int a[125][125];
    
    int main()
    {
        //freopen ("test.txt", "r", stdin);
        memset (a, 0, sizeof(a));
        for (int i = 1; i <= 120; ++i)
        {
            for (int j = 1; j <= i; ++j)
            {
                if (i == 1 || i == j)
                {
                    a[i][j] = 1;
                }
                else
                {
                    for (int k = 1; k <= j && k <= i-j; ++k)
                    {
                        a[i][j] += a[i-j][k];
                    }
                }
                a[i][0] += a[i][j];
            }
        }
        int n;
        while(scanf("%d", &n) != EOF)
        {
            printf ("%d
    ", a[n][0]);
        }
        return 0;
    }
    
  • 相关阅读:
    概率密度函数 通俗理解
    宋浩《概率论与数理统计》笔记---2.2.2、连续型随机变量及其概率密度函数
    宋浩《概率论与数理统计》笔记---2.2.1、离散型随机变量及其概率分布
    宋浩《概率论与数理统计》笔记---2.1、随机变量的概念
    宋浩《概率论与数理统计》笔记---1.5.2、伯努利模型
    宋浩《概率论与数理统计》笔记---1.5.1、事件的独立性
    贝叶斯公式-汽车实例
    贝叶斯公式的理解
    宋浩《概率论与数理统计》笔记---1.4.2、贝叶斯公式
    nodemon通过配置文件监视
  • 原文地址:https://www.cnblogs.com/andyqsmart/p/4101747.html
Copyright © 2011-2022 走看看