zoukankan      html  css  js  c++  java
  • 网络协议详解

    网络分层:

    OSI模型是七层,TCP/IP模型四层

    应用层

    1)HTTP:超文本传输协议,基于TCP,是用于从WWW服务器传输超文本到本地浏览器的传输协议。它可以使浏览器更加高效,使网络传输减少。

    2)SMTP:简单邮件传输协议,是一组用于由源地址到目的地址传送邮件的规则,由它来控制信件的中转方式。

    3)SNMP:简单网络管理协议,由一组网络管理的标准组成,包含一个应用层协议、数据库模型和一组资源对象。

    4)FTP:文件传输协议,用于Internet上的控制文件的双向传输。同时也是一个应用程序。

    5)Telnet:是Internet远程登陆服务的标准协议和主要方式。为用户提供了在本地计算机上完成远程主机工作的能力。在终端使用者的电脑上使用telnet程序,用它连接到服务器。

    6)SSH:安全外壳协议,为建立在应用层和传输层基础上的安全协议。SSH 是目前较可靠,专为远程登录会话和其他网络服务提供安全性的协议。

    7)NFS:网络文件系统,是FreeBSD支持的文件系统中的一种,允许网络中的计算机之间通过TCP/IP网络共享资源。

    传输层:

    1)TCP: 一种面向连接的、可靠的、基于字节流的传输层通信协议。TCP传送的数据单元是报文段。

    2)  UDP: 用户数据报协议,不要建立链接,不需要对方确认,不可靠,但效率高,提供面向事务的简单不可靠信息传送服务。UDP传送的数据单元是数据报.

    网络层:

    1)IP协议:

    • 规定网络地址的协议叫ip协议,它定义的地址称之为ip地址,广泛采用的v4版本即ipv4,它规定网络地址由32位2进制表示
    • 范围0.0.0.0-255.255.255.255
    • 一个ip地址通常写成四段十进制数,例:172.16.10.1

    子网掩码:将ip地址分为网络地址和主机地址

    所谓”子网掩码”,就是表示子网络特征的一个参数。它在形式上等同于IP地址,也是一个32位二进制数字,它的网络部分全部为1,主机部分全部为0。比如,IP地址172.16.10.1,如果已知网络部分是前24位,主机部分是后8位,那么子网络掩码就是11111111.11111111.11111111.00000000,写成十进制就是255.255.255.0。

    子网掩码是用来标识一个IP地址的哪些位是代表网络位,以及哪些位是代表主机位。子网掩码不能单独存在,它必须结合IP地址一起使用。子网掩码只有一个作用,就是将某个IP地址划分成网络地址和主机地址两部分。

    区分网络位和主机位是为了划分子网,把一个大网络分成多个小网络

    传输的数据单元是IP数据报

    2)RARP:反向地址转换协议。允许局域网的物理机器从网关服务器的 ARP 表或者缓存上请求其 IP 地址。局域网网关路由器中存有一个表以映射MAC和与其对应的 IP 地址。当设置一台新的机器时,其 RARP 客户机程序需要向路由器上的 RARP 服务器请求相应的 IP 地址。假设在路由表中已经设置了一个记录,RARP 服务器将会返回 IP 地址给机器。

    3)IGMP:组播协议包括组成员管理协议和组播路由协议。组成员管理协议用于管理组播组成员的加入和离开,组播路由协议负责在路由器之间交互信息来建立组播树。IGMP属于前者,是组播路由器用来维护组播组成员信息的协议,运行于主机和和组播路由器之间。IGMP 信息封装在IP报文中,其IP的协议号为2。

    4)ICMP:Internet控制报文协议。用于在IP主机、路由器之间传递控制消息。控制消息是指网络通不通、主机是否可达、路由是否可用等网络本身的消息。这些控制消息虽然并不传输用户数据,但是对于用户数据的传递起着重要的作用。

    前面讲到了,IP协议并不是一个可靠的协议,它不保证数据被送达,那么,自然的,保证数据送达的工作应该由其他的模块来完成。其中一个重要的模块就是ICMP(网络控制报文)协议。

    当传送IP数据包发生错误--比如主机不可达,路由不可达等等,ICMP协议将会把错误信息封包,然后传送回给主机。给主机一个处理错误的机会.

    我们一般主要用ICMP协议检测网络是否通畅,基于ICMP协议的工具主要有ping 和traceroute

    ping:

    ping这个单词源自声纳定位,而这个程序的作用也确实如此,它利用ICMP协议包来侦测另一个主机是否可达。

    原理是用类型码为0的ICMP发请 求,受到请求的主机则用类型码为8的ICMP回应。

    ping程序来计算间隔时间,并计算有多少个包被送达。用户就可以判断网络大致的情况。我们可以看到, ping给出来了传送的时间和TTL的数据。

    用来查看从当前主机到某地址一共经过多少跳路由 ------window 用命令:tracert----------linux命令:tracerout

     

    ICMP中报文类型值对应的解释

    type:8 代表request

    type:0 代表response

    type:3 表示传递过程中,目标不可达

    type:4 表示源端被关闭

    type:5 表示重定向

    5)arp协议由来:计算机通信基本靠吼,即广播的方式,所有上层的包到最后都要封装上以太网头,然后通过以太网协议发送,在谈及以太网协议时候,我门了解到

    通信是基于mac的广播方式实现,计算机在发包时,获取自身的mac是容易的,如何获取目标主机的mac,就需要通过arp协议

    arp协议功能:广播的方式发送数据包,获取目标主机的mac地址

    协议工作方式:每台主机ip都是已知的

    例如:主机172.16.10.10/24访问172.16.10.11/24

           三:这个包会以广播的方式在发送端所处的子网内传输,所有主机接收后拆开包,发现目标ip为自己的,就响应,返回自己的mac

    6) BGP :边界网关协议。处理像因特网大小的网络和不相关路由域间的多路连接。

    7)RIP:路由信息协议。是一种分布式的基于距离矢量的路由选择协议。

    详解TCP连接的“三次握手”与“四次挥手”

    一、TCP  Connection


    客户端与服务器端之间的请求和响应是建立在TCP Connection基础上的;

    对于不同版本下的http,tcp的连接方式如下所示:

    HTTP/1.0版本中:这个TCP连接是在http请求创建的时候同步创建的,http请求发送到服务器端,服务器端响应了之后,这个TCP连接就关闭了;

    HTTP/1.1版本中:以某种方式声明这个连接一直保持,一个请求传输完之后,另一个请求可以接着传输。这样的好处是:因为在创建一个TCP连接的过程中需要“三次握手”的消耗,“三次握手”代表有三次网络传输。如果TCP连接保持,第二个请求发送就没有这“三次握手”的消耗。

    HTTP/2版本中:同一个TCP连接里还可以并发地传输http请求。

    二、TCP报文格式简介

    此图对应下列中具体的值:例如,源端口---Source  port 等等

    其中比较重要的字段有:

    (1)序号(sequence number):Seq序号,占32位,用来标识从TCP源端向目的端发送的字节流,发起方发送数据时对此进行标记。

    (2)确认号(acknowledgement number):Ack序号,占32位,只有ACK标志位为1时,确认序号字段才有效,Ack=Seq+1。

    (3)标志位(Flags):共6个,即URG、ACK、PSH、RST、SYN、FIN等,具体含义如下:

    • URG:紧急指针(urgent pointer)有效。
    • ACK:确认序号有效。此标志表示应答域有效,就是说前面所说的TCP应答号将会包含在TCP数据包中;有两个取值:0和1,为1的时候表示应答域有效,反之为0;
    • PSH:接收方应该尽快将这个报文交给应用层。
    • RST:重置连接。
    • SYN:发起一个新连接。SYN=1表示建立连接请求
    • FIN:释放一个连接。

    需要注意的是:

    • 不要将确认序号Ack与标志位中的ACK搞混了。
    • 确认方Ack=发起方Seq+1,两端配对。

    下图中红框部分表示的是标志位:例如:[SYN]、[SYN,ACK]、[ACK]

    三、TCP的三次握手过程

    TCP连接的建立就是所谓的三次握手。这个连接必须是一方主动打开,另一方被动打开的。
    以下为客户端主动发起连接的图解:

    握手之前主动打开连接的客户端结束CLOSED阶段,被动打开的服务器端也结束CLOSED阶段,并进入LISTEN阶段。随后开始“三次握手”:

    (1)首先客户端向服务器端发送一段TCP报文,其中:
    标记位为SYN,表示“请求建立新连接”;
    序号为Seq=X;
    随后客户端进入SYN-SENT阶段。

    (2)服务器端接收到来自客户端的TCP报文之后,结束LISTEN阶段。并返回一段TCP报文,其中:
    标志位为SYN和ACK,表示“确认客户端的报文中Seq序号有效,服务器能正常接收客户端发送的数据,并同意创建新连接”(即告诉客户端,服务器收到了你的数据);
    序号为Seq=y;
    确认号为Ack=x+1,表示收到客户端的序号Seq并将其值加1作为自己确认号Ack的值;随后服务器端进入SYN-RCVD阶段。

    (3)客户端接收到来自服务器端的“确认收到数据的TCP报文”之后,明确了从客户端到服务器的数据传输是正常的,结束SYN-SENT阶段。并返回最后一段TCP报文。其中:
    标志位为ACK,表示“确认收到服务器端同意连接的信号”(即告诉服务器,我知道你收到我发的数据了);
    序号为Seq=Ack=x+1,表示收到服务器端的确认号Ack,并将其值作为自己的序号值;
    确认号为Ack=y+1,表示收到服务器端序号Seq,并将其值加1作为自己的确认号Ack的值;
    随后客户端进入ESTABLISHED阶段。

    服务器收到来自客户端的“确认收到服务器数据”的TCP报文之后,明确了从服务器到客户端的数据传输是正常的。结束SYN-SENT阶段,进入ESTABLISHED阶段。

    在客户端与服务器端传输的TCP报文中,双方的确认号Ack和序号Seq的值,都是在彼此Ack和Seq值的基础上进行计算的,这样做保证了TCP报文传输的连贯性。一旦出现某一方发出的TCP报文丢失,便无法继续"握手",以此确保了"三次握手"的顺利完成。

    此后客户端和服务器端进行正常的数据传输。这就是“三次握手”的过程。

    为什么要三次握手?而不是两次?

    为了防止服务器端开启一些无用的连接增加服务器开销以及防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误。

    由于网络传输是有延时的(要通过网络光纤和各种中间代理服务器),在传输的过程中,比如客户端发起了SYN=1创建连接的请求(第一次握手)。

    如果服务器端就直接创建了这个连接并返回包含SYN、ACK和Seq等内容的数据包给客户端,这个数据包因为网络传输的原因丢失了,丢失之后客户端就一直没有接收到服务器返回的数据包。客户端可能设置了一个超时时间,时间到了就关闭了连接创建的请求。再重新发出创建连接的请求,而服务器端是不知道的,如果没有第三次握手告诉服务器端客户端收的到服务器端传输的数据的话,服务器端是不知道客户端有没有接收到服务器端返回的信息的。

    三次握手”的通俗理解



    举个栗子:把客户端比作男孩,服务器比作女孩。用他们的交往来说明“三次握手”过程:

      • (1)男孩喜欢女孩,于是写了一封信告诉女孩:我爱你,请和我交往吧!;写完信之后,男孩焦急地等待,因为不知道信能否顺利传达给女孩。

      • (2)女孩收到男孩的情书后,心花怒放,原来我们是两情相悦呀!于是给男孩写了一封回信:我收到你的情书了,也明白了你的心意,其实,我也喜欢你!我愿意和你交往!;
        写完信之后,女孩也焦急地等待,因为不知道回信能否能顺利传达给男孩。

      • (3)男孩收到回信之后很开心,因为发出的情书女孩收到了,并且从回信中知道了女孩喜欢自己,并且愿意和自己交往。然后男孩又写了一封信告诉女孩:你的心意和信我都收到了,谢谢你,还有我爱你!

    四、TCP的四次挥手过程

    所谓的四次挥手即TCP连接的释放(解除)。连接的释放必须是一方主动释放,另一方被动释放。以下为客户端主动发起释放连接的图解:


    挥手之前主动释放连接的客户端结束ESTABLISHED阶段。随后开始“四次挥手”:

    (1)首先客户端想要释放连接,向服务器端发送一段TCP报文,其中:

    标志位为FIN,表示“请求释放连接“;

    序号为Seq=U;

    随后客户端进入FIN-WAIT-1阶段,即半关闭阶段。并且停止在客户端到服务器端方向上发送数据,但是客户端仍然能接收从服务器端传输过来的数据。

    注意:这里不发送的是正常连接时传输的数据(非确认报文),而不是一切数据,所以客户端仍然能发送ACK确认报文。

    (2)服务器端接收到从客户端发出的TCP报文之后,确认了客户端想要释放连接,随后服务器端结束ESTABLISHED阶段,进入CLOSE-WAIT阶段(半关闭状态)并返回一段TCP报文,其中:

    标记位为ACK,表示“接收到客户端发送的释放连接的请求”;

    序号为Seq=V;

    确认号为Ack=U+1,表示是在收到客户端报文的基础上,将其序号Seq值加1作为本段报文确认号Ack的值;

    随后服务器端开始准备释放服务器端到客户端方向上的连接。

    客户端收到从服务器端发出的TCP报文之后,确认了服务器收到了客户端发出的释放连接请求,随后客户端结束FIN-WAIT-1阶段,进入FIN-WAIT-2阶段

    前"两次挥手"既让服务器端知道了客户端想要释放连接,也让客户端知道了服务器端了解了自己想要释放连接的请求。于是,可以确认关闭客户端到服务器端方向上的连接了

    (3)服务器端自从发出ACK确认报文之后,经过CLOSED-WAIT阶段,做好了释放服务器端到客户端方向上的连接准备,再次向客户端发出一段TCP报文,其中:

    标记位为FIN,ACK,表示“已经准备好释放连接了”。注意:这里的ACK并不是确认收到服务器端报文的确认报文。

    序号为Seq=W;

    确认号为Ack=U+1;表示是在收到客户端报文的基础上,将其序号Seq值加1作为本段报文确认号Ack的值。

    随后服务器端结束CLOSE-WAIT阶段,进入LAST-ACK阶段。并且停止在服务器端到客户端的方向上发送数据,但是服务器端仍然能够接收从客户端传输过来的数据。

    (4)客户端收到从服务器端发出的TCP报文,确认了服务器端已做好释放连接的准备,结束FIN-WAIT-2阶段,进入TIME-WAIT阶段,并向服务器端发送一段报文,其中:

    标记位为ACK,表示“接收到服务器准备好释放连接的信号”。

    序号为Seq=U+1;表示是在收到了服务器端报文的基础上,将其确认号Ack值作为本段报文序号的值。

    确认号为Ack=W+1;表示是在收到了服务器端报文的基础上,将其序号Seq值作为本段报文确认号的值。

    随后客户端开始在TIME-WAIT阶段等待2MSL。

    服务器端收到从客户端发出的TCP报文之后结束LAST-ACK阶段,进入CLOSED阶段。由此正式确认关闭服务器端到客户端方向上的连接。

    客户端等待完2MSL之后,结束TIME-WAIT阶段,进入CLOSED阶段,由此完成“四次挥手”。

    后“两次挥手”既让客户端知道了服务器端准备好释放连接了,也让服务器端知道了客户端了解了自己准备好释放连接了。于是,可以确认关闭服务器端到客户端方向上的连接了,由此完成“四次挥手”。

    为什么要客户端要等待2MSL呢?见后文。

    为的是确认服务器端是否收到客户端发出的ACK确认报文

    当客户端发出最后的ACK确认报文时,并不能确定服务器端能够收到该段报文。所以客户端在发送完ACK确认报文之后,会设置一个时长为2MSL的计时器。MSL指的是Maximum Segment Lifetime:一段TCP报文在传输过程中的最大生命周期。2MSL即是服务器端发出为FIN报文和客户端发出的ACK确认报文所能保持有效的最大时长。

    服务器端在1MSL内没有收到客户端发出的ACK确认报文,就会再次向客户端发出FIN报文;

    • 如果客户端在2MSL内,再次收到了来自服务器端的FIN报文,说明服务器端由于各种原因没有接收到客户端发出的ACK确认报文。客户端再次向服务器端发出ACK确认报文,计时器重置,重新开始2MSL的计时;
    • 否则客户端在2MSL内没有再次收到来自服务器端的FIN报文,说明服务器端正常接收了ACK确认报文,客户端可以进入CLOSED阶段,完成“四次挥手”。

    RFC 793中规定MSL为2分钟,实际应用中常用的是30秒,1分钟和2分钟等

    所以,客户端要经历时长为2SML的TIME-WAIT阶段;这也是为什么客户端比服务器端晚进入CLOSED阶段的原因。

    为什么要四次挥手?而不是三次?

    TCP释放连接时之所以需要“四次挥手”,是因为FIN释放连接报文与ACK确认接收报文是分别由第二次和第三次"挥手"传输的。为何不在建立连接时一起传输,释放连接时却要分开传输?

    • 建立连接时,被动方服务器端结束CLOSED阶段进入“握手”阶段并不需要任何准备,可以直接返回SYN和ACK报文,开始建立连接。
    • 释放连接时,被动方服务器,突然收到主动方客户端释放连接的请求时并不能立即释放连接,因为还有必要的数据需要处理,所以服务器先返回ACK确认收到报文,经过CLOSE-WAIT阶段准备好释放连接之后,才能返回FIN释放连接报文

    “四次挥手”的通俗理解


    举个栗子:把客户端比作男孩,服务器比作女孩。通过他们的分手来说明“四次挥手”过程。

    • "第一次挥手":日久见人心,男孩发现女孩变成了自己讨厌的样子,忍无可忍,于是决定分手,随即写了一封信告诉女孩。

    • “第二次挥手”:女孩收到信之后,知道了男孩要和自己分手,怒火中烧,心中暗骂:你算什么东西,当初你可不是这个样子的!于是立马给男孩写了一封回信:分手就分手,给我点时间,我要把你的东西整理好,全部还给你!

      男孩收到女孩的第一封信之后,明白了女孩知道自己要和她分手。随后等待女孩把自己的东西收拾好。

    • “第三次挥手”:过了几天,女孩把男孩送的东西都整理好了,于是再次写信给男孩:你的东西我整理好了,快把它们拿走,从此你我恩断义绝!

    • “第四次挥手”:男孩收到女孩第二封信之后,知道了女孩收拾好东西了,可以正式分手了,于是再次写信告诉女孩:我知道了,这就去拿回来!

    状态详解:

       CLOSED: 这个没什么好说的了,表示初始状态。
       LISTEN 这个也是非常容易理解的一个状态,表示服务器端的某个SOCKET处于监听状态,可以接受连接了。
      SYN_RCVD: 这个状态表示接受到了SYN报文,在正常情况下,这个状态是服务器端的SOCKET在建立TCP连接时的三次握手会话过程中的一个中间状态,很短暂,基本 上用netstat你是很难看到这种状态的,除非你特意写了一个客户端测试程序,故意将三次TCP握手过程中最后一个ACK报文不予发送。因此这种状态 时,当收到客户端的ACK报文后,它会进入到ESTABLISHED状态。
      SYN_SENT: 这个状态与SYN_RCVD遥想呼应,当客户端SOCKET执行CONNECT连接时,它首先发送SYN报文,因此也随即它会进入到了SYN_SENT状态,并等待服务端的发送三次握手中的第2个报文。SYN_SENT状态表示客户端已发送SYN报文。
      ESTABLISHED:这个容易理解了,表示连接已经建立了。
      FIN_WAIT_1: 这个状态要好好解释一下,其实FIN_WAIT_1和FIN_WAIT_2状态的真正含义都是表示等待对方的FIN报文。而这两种状态的区别 是:FIN_WAIT_1状态实际上是当SOCKET在ESTABLISHED状态时,它想主动关闭连接,向对方发送了FIN报文,此时该SOCKET即 进入到FIN_WAIT_1状态。而当对方回应ACK报文后,则进入到FIN_WAIT_2状态,当然在实际的正常情况下,无论对方何种情况下,都应该马 上回应ACK报文,所以FIN_WAIT_1状态一般是比较难见到的,而FIN_WAIT_2状态还有时常常可以用netstat看到。
      FIN_WAIT_2:上面已经详细解释了这种状态,实际上FIN_WAIT_2状态下的SOCKET,表示半连接,也即有一方要求close连接,但另外还告诉对方,我暂时还有点数据需要传送给你,稍后再关闭连接。
      TIME_WAIT: 表示收到了对方的FIN报文,并发送出了ACK报文,就等2MSL后即可回到CLOSED可用状态了。如果FIN_WAIT_1状态下,收到了对方同时带FIN标志和ACK标志的报文时,可以直接进入到TIME_WAIT状态,而无须经过FIN_WAIT_2状态。
      CLOSING: 这种状态比较特殊,实际情况中应该是很少见,属于一种比较罕见的例外状态。正常情况下,当你发送FIN报文后,按理来说是应该先收到(或同时收到)对方的 ACK报文,再收到对方的FIN报文。但是CLOSING状态表示你发送FIN报文后,并没有收到对方的ACK报文,反而却也收到了对方的FIN报文。什 么情况下会出现此种情况呢?其实细想一下,也不难得出结论:那就是如果双方几乎在同时close一个SOCKET的话,那么就出现了双方同时发送FIN报 文的情况,也即会出现CLOSING状态,表示双方都正在关闭SOCKET连接。
      LAST_ACK: 这个状态还是比较容易好理解的,它是被动关闭一方在发送FIN报文后,最后等待对方的ACK报文。当收到ACK报文后,也即可以进入到CLOSED可用状态了。

    參考资料:https://www.cnblogs.com/AhuntSun-blog/p/12028636.html

    https://blog.51cto.com/wuhaoshu/429027

     https://blog.csdn.net/Yansky58685/article/details/98125046

    https://www.cnblogs.com/ellisonzhang/p/10403311.html

  • 相关阅读:
    docker使用常用命令:启动/重启/关闭docker
    golang 中内存模型
    【转】Linux fork操作之后发生了什么?又会共享什么呢?
    go检查channel是否关闭
    golang select case 用法
    【转】理解字节序 大端字节序和小端字节序
    【转】3种TCP连接异常的情况。
    react-window 多条列表数据加载(虚拟滚动)
    ts 中 interface 与 class 的区别
    js new一个对象的过程,实现一个简单的new方法
  • 原文地址:https://www.cnblogs.com/angelgril/p/13720092.html
Copyright © 2011-2022 走看看