zoukankan      html  css  js  c++  java
  • POJ -- 2823

    Sliding Window
    Time Limit: 12000MS   Memory Limit: 65536K
    Total Submissions: 35408   Accepted: 10476
    Case Time Limit: 5000MS

    Description

    An array of size n ≤ 106 is given to you. There is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves rightwards by one position. Following is an example: 
    The array is [1 3 -1 -3 5 3 6 7], and k is 3.
    Window positionMinimum valueMaximum value
    [1  3  -1] -3  5  3  6  7  -1 3
     1 [3  -1  -3] 5  3  6  7  -3 3
     1  3 [-1  -3  5] 3  6  7  -3 5
     1  3  -1 [-3  5  3] 6  7  -3 5
     1  3  -1  -3 [5  3  6] 7  3 6
     1  3  -1  -3  5 [3  6  7] 3 7

    Your task is to determine the maximum and minimum values in the sliding window at each position. 

    Input

    The input consists of two lines. The first line contains two integers n and k which are the lengths of the array and the sliding window. There are n integers in the second line. 

    Output

    There are two lines in the output. The first line gives the minimum values in the window at each position, from left to right, respectively. The second line gives the maximum values. 

    Sample Input

    8 3
    1 3 -1 -3 5 3 6 7
    

    Sample Output

    -1 -3 -3 -3 3 3
    3 3 5 5 6 7

    思路:据说是单调队列,我用线段树过的。。。
     1 #include<iostream>
     2 #include<cstdio>
     3 #define MAX 1000005
     4 using namespace std;
     5 typedef struct
     6 {
     7     int left, right, mid, min, max;
     8 }NodeTree;
     9 NodeTree node[4*MAX];
    10 int maxn, minn, min_num[MAX],max_num[MAX];
    11 void BuildTree(int k, int l, int r)
    12 {
    13     node[k].left = l;
    14     node[k].right = r;
    15     node[k].mid = (l + r) >> 1;
    16     node[k].max = -10000000;
    17     node[k].min = 10000000;
    18     if(l == r)
    19         return;
    20     int mid = (l + r) >> 1;
    21     BuildTree(k << 1, l, mid);
    22     BuildTree(k << 1|1, mid+1, r);
    23 }
    24 
    25 void UpdateTree(int k, int l, int r, int num)
    26 {
    27     if(node[k].max < num)
    28         node[k].max = num;
    29     if(node[k].min > num)
    30         node[k].min = num;
    31     if(node[k].left == node[k].right)
    32         return;
    33     if(node[k].mid < l)
    34         UpdateTree(k << 1|1, l, r, num);
    35     else if(node[k].mid >= r)
    36         UpdateTree(k << 1, l, r, num);
    37     else
    38     {
    39         UpdateTree(k << 1, l, node[k].mid, num);
    40         UpdateTree(k << 1|1, node[k].mid + 1, r, num);
    41     }
    42 }
    43 
    44 void GetResult(int k, int l, int r)
    45 {
    46     if(node[k].left ==l && node[k].right==r)
    47     {
    48         minn = min(minn, node[k].min);
    49         maxn = max(maxn, node[k].max);
    50         return;
    51     }
    52     if(node[k].mid < l)
    53         GetResult(k << 1|1, l, r);
    54     else if(node[k].mid >= r)
    55         GetResult(k << 1, l, r);
    56     else
    57     {
    58         GetResult(k << 1, l, node[k].mid);
    59         GetResult(k << 1|1, node[k].mid + 1, r);
    60     }
    61 }
    62 
    63 int main(int argc, char const *argv[]) 
    64 {
    65     int n, k, i, temp;
    66     freopen("in.c", "r", stdin);
    67     while(~scanf("%d%d", &n, &k))
    68     {
    69         BuildTree(1, 1, n);
    70         for(i = 1;i <= n;i ++)
    71         {
    72             scanf("%d", &temp);
    73             UpdateTree(1, i, i, temp);
    74         }
    75         int j = 0;
    76         for(i = 1;i < n - k  + 2;i ++)
    77         {
    78             minn = 10000000;
    79             maxn = -10000000;
    80             GetResult(1, i, i+k-1);
    81             min_num[j] = minn;
    82             max_num[j ++] = maxn;
    83         }
    84         for(i = 0;i < n - k;i ++)
    85             printf("%d ", min_num[i]);
    86         printf("%d
    ", min_num[i]);
    87         for(i = 0;i < n - k;i ++)
    88             printf("%d ", max_num[i]);
    89         printf("%d
    ", max_num[i]);
    90     }
    91     return 0;
    92 }
     
     
  • 相关阅读:
    大端与小端编号方法的区别
    socket、listen 等函数的打电话隐喻
    windows 网络编程报错 error LNK2019
    有符号数与无符号数之间的转换
    C++ 代码命名建议
    编写启发式代码的方法
    求给定数目的前 n 个素数
    不使用 “+” 实现加法操作
    二叉搜索树中两个节点的旋转
    Python玩转硬件:TPYBoard-Micropython开发板大盘点
  • 原文地址:https://www.cnblogs.com/anhuizhiye/p/3597320.html
Copyright © 2011-2022 走看看