zoukankan      html  css  js  c++  java
  • POJ ---1050 To the Max

    To the Max
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 38914   Accepted: 20534

    Description

    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 
    As an example, the maximal sub-rectangle of the array: 

    0 -2 -7 0 
    9 2 -6 2 
    -4 1 -4 1 
    -1 8 0 -2 
    is in the lower left corner: 

    9 2 
    -4 1 
    -1 8 
    and has a sum of 15. 

    Input

    The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

    Output

    Output the sum of the maximal sub-rectangle.

    Sample Input

    4
    0 -2 -7 0 9 2 -6 2
    -4 1 -4  1 -1
    
    8  0 -2

    Sample Output

    15

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 using namespace std;
     5 int map[105][105], sum[105][105];
     6 int main(){
     7     int n, maxn;
     8     /* freopen("in.c", "r", stdin); */
     9     while(~scanf("%d", &n)){
    10         for(int i = 1;i <=n;i ++){
    11             for(int j = 1;j <= n;j ++){
    12                 scanf("%d", &map[i][j]);
    13                 sum[i][j] = sum[i-1][j] + sum[i][j-1] + map[i][j] - sum[i-1][j-1];
    14             }
    15         }
    16         maxn = -100000000;
    17         for(int i = 1;i <= n;i ++){
    18             for(int j = 1;j <= n;j ++){
    19                 for(int k = i+1;k <= n;k ++){
    20                     for(int p = j+1;p <= n;p ++)
    21                         maxn = max(sum[k][p]-sum[k][j-1]-sum[i-1][p] + sum[i-1][j-1], maxn);
    22                 }
    23             }
    24         }
    25         printf("%d
    ", maxn);
    26     }
    27     return 0;
    28 }
  • 相关阅读:
    046.Kubernetes集群管理-日常运维
    045.Kubernetes集群存储-CSI存储机制
    044.Kubernetes集群存储-StorageClass
    043.Kubernetes集群存储-共享存储
    CKAD考试心得分享
    050.Kubernetes集群管理-Prometheus+Grafana监控方案
    附015.Kubernetes其他技巧
    041.Kubernetes集群网络-K8S网络策略
    042.Kubernetes集群网络-flannel及calico
    040.Kubernetes集群网络-CNI网络模型
  • 原文地址:https://www.cnblogs.com/anhuizhiye/p/3618714.html
Copyright © 2011-2022 走看看