设dp[s]表示状态s下所需要的线段的个数,s的二进制中第x位为1就表示该状态下第x个点没被线段覆盖。需要预处理出来在任意两点之间连线所覆盖点的状态O(n^3),然后记忆化搜索即可。
#include<cstdio> #include<string> #include<cstring> #include<iostream> #include<algorithm> using namespace std; const int MAXN = 16; int n, dp[1 << MAXN], s[MAXN][MAXN]; struct Point{ int x, y; bool isOnLine(const Point &A, const Point &B){ return (A.y-y)*(x-B.x) == (A.x-x)*(y-B.y); } }; Point P[MAXN]; void init(){ memset(dp, 0x3f, sizeof dp); memset(s, 0, sizeof s); for(int i = 0;i < n;i ++){ for(int j = i+1;j < n;j ++){ for(int k = 0;k < n;k ++){ if(P[k].isOnLine(P[i], P[j])) s[i][j] = s[j][i] |= (1 << k); } } } } int dfs(int st){ if(dp[st] != 0x3f3f3f3f) return dp[st]; int cnt = 0; for(int i = 0;i < n;i ++) if(st & (1 << i)) cnt++; if(cnt == 0) return 0; if(cnt <= 2) return dp[st] = 1; for(int i = 0;i < n;i ++){ if(st & (1 << i)){ for(int j = i + 1;j < n;j ++){ if(st & (1 << j)){ dp[st] = min(dp[st], dfs(st - (st&s[i][j])) + 1); } } break; } } return dp[st]; } int main(){ int t, CASE(0); scanf("%d", &t); while(t--){ scanf("%d", &n); for(int i = 0;i < n;i ++) scanf("%d%d", &P[i].x, &P[i].y); init(); printf("Case %d: %d ", ++CASE, dfs((1 << n)-1)); } return 0; }