zoukankan      html  css  js  c++  java
  • Leetcode Rectangle Area

    Find the total area covered by two rectilinear rectangles in a 2D plane.

    Each rectangle is defined by its bottom left corner and top right corner as shown in the figure.

     

    Assume that the total area is never beyond the maximum possible value of int.


    解题思路:

    简单计算几何。根据容斥原理:S(M ∪ N) = S(M) + S(N) - S(M ∩ N)

    题目可以转化为计算矩形相交部分的面积

    S(M) = (C - A) * (D - B)

    S(N) = (G - E) * (H - F)

    S(M ∩ N) = max(min(C, G) - max(A, E), 0) * max(min(D, H) - max(B, F), 0)

    注意: min(C, G) - max(A, E), min(D, H) - max(B, F)可能会溢出, 需要先转换成long 判断后再转换回int.


     Java code:

     1  public int computeArea(int A, int B, int C, int D, int E, int F, int G, int H) {
     2         int sums = (C-A) *(D-B) + (G-E)*(H-F);
     3         long x = (long)Math.min(C,G)- (long)Math.max(A,E);
     4         long y = (long)Math.min(D,H)- (long)Math.max(B,F);
     5         if(x <  Integer.MIN_VALUE || x > Integer.MAX_VALUE) { x = 0;}
     6         if(y <  Integer.MIN_VALUE || y > Integer.MAX_VALUE) { y = 0;}
     7         int m = (int)x;
     8         int n = (int)y;
     9        return  sums - Math.max(m, 0) * Math.max(n, 0);
    10     }

    Reference:

    1. http://bookshadow.com/weblog/2015/06/08/leetcode-rectangle-area/

  • 相关阅读:
    eclipse快速收缩展开代码
    Java中this关键字在构造方法中的使用
    Java中String的常用方法
    Java中的Comparable<T>和Comparator<T>接口
    Oracle中的自增-序列-SEQUENCE
    Java中的代码块
    Oracle中的约束
    Oracle中对表的操作
    ROWID-Oracle中删除重复行数据
    Selenium简单回顾
  • 原文地址:https://www.cnblogs.com/anne-vista/p/4793469.html
Copyright © 2011-2022 走看看