zoukankan      html  css  js  c++  java
  • 【python】进程与线程

    No1:

    多进程

    from multiprocessing import Process
    import os
    
    # 子进程要执行的代码
    def run_proc(name):
        print('Run child process %s (%s)...' % (name, os.getpid()))
    
    if __name__=='__main__':
        print('Parent process %s.' % os.getpid())
        p = Process(target=run_proc, args=('test',))
        print('Child process will start.')
        p.start()
        p.join()
        print('Child process end.')

    运行结果

    创建一个Process实例,用start()方法启动,join()方法可以等待子进程结束后再继续往下运行,通常用于进程间的同步。

    No2:

    进程池

    from multiprocessing import Pool
    import os, time, random
    
    def long_time_task(name):
        print('Run task %s (%s)...' % (name, os.getpid()))
        start = time.time()
        time.sleep(random.random() * 3)
        end = time.time()
        print('Task %s runs %0.2f seconds.' % (name, (end - start)))
    
    if __name__=='__main__':
        print('Parent process %s.' % os.getpid())
        p = Pool(4)
        for i in range(5):
            p.apply_async(long_time_task, args=(i,))
        print('Waiting for all subprocesses done...')
        p.close()
        p.join()
        print('All subprocesses done.')

    运行结果

    No3:

    子进程

    import subprocess
    
    print('$ nslookup www.python.org')
    r = subprocess.call(['nslookup','www.python.org'])
    print('Exit code:',r)

    运行结果

    No4:

    import subprocess
    
    print('$ nslookup')
    p=subprocess.Popen(['nslookup'],stdin=subprocess.PIPE,stdout=subprocess.PIPE,stderr=subprocess.PIPE)
    output,err=p.communicate(b'set q=mx
    python.org
    exit
    ')
    print(output.decode('utf-8'))
    print('Exit code:',p.returncode)

    运行结果

    No5:

    进程间通信

    from multiprocessing import Process,Queue
    import os,time,random
    
    def write(q):
        print('Process to write: %s' % os.getpid())
        for value in['A','B','C']:
            print('Put %s to queue...' % value)
            q.put(value)
            time.sleep(random.random())
            
    def read(q):
        print('Process to read: %s' % os.getpid())
        while True:
            value = q.get(True)
            print('Get %s from queue.' % value)
            
    if __name__=='__main__':
        q=Queue()
        pw=Process(target=write,args=(q,))
        pr=Process(target=read,args=(q,))
        pw.start()
        pr.start()
        pw.join()
        pr.terminate()

    在Unix/Linux下,可以使用fork()调用实现多进程。

    要实现跨平台的多进程,可以使用multiprocessing模块。

    进程间通信是通过QueuePipes等实现的。

    No6:

    多线程

    Python的标准库提供了两个模块:_threadthreading_thread是低级模块,threading是高级模块,对_thread进行了封装。绝大多数情况下,我们只需要使用threading这个高级模块。

    import time,threading
    
    def loop():
        print('thread %s is running...' % threading.current_thread().name)
        n=0
        while n<5:
            n=n+1
            print('thread %s >>> %s' % (threading.current_thread().name,n))
            time.sleep(1)
        print('thread %s ended.' % threading.current_thread().name)
        
    print('thread %s is running...' % threading.current_thread().name)
    t = threading.Thread(target=loop,name='LoopThread')
    t.start()
    t.join()
    print('thread %s ended.' % threading.current_thread().name)

    运行结果

    No7:

    锁Lock

    import time,threading
    
    blance=0
    lock=threading.Lock()
    
    def run_thread(n):
        for i in range(100000):
            lock.acquire()
            try:
                change_it(n)
            finally:
                lock.release()

    死锁

    import threading,multiprocessing
    
    def loop():
        x=0
        while True:
            x = x^1
    
    for i in range(multiprocessing.cpu_count()):
        t = threading.Thread(target=loop)
        t.start()

    Python的线程虽然是真正的线程,但解释器执行代码时,有一个GIL锁:Global Interpreter Lock,任何Python线程执行前,必须先获得GIL锁,然后,每执行100条字节码,解释器就自动释放GIL锁,让别的线程有机会执行。这个GIL全局锁实际上把所有线程的执行代码都给上了锁,所以,多线程在Python中只能交替执行,即使100个线程跑在100核CPU上,也只能用到1个核。

    GIL是Python解释器设计的历史遗留问题,通常我们用的解释器是官方实现的CPython,要真正利用多核,除非重写一个不带GIL的解释器。

    所以,在Python中,可以使用多线程,但不要指望能有效利用多核。如果一定要通过多线程利用多核,那只能通过C扩展来实现,不过这样就失去了Python简单易用的特点。

    不过,也不用过于担心,Python虽然不能利用多线程实现多核任务,但可以通过多进程实现多核任务。多个Python进程有各自独立的GIL锁,互不影响。

    No8:

    ThreadLocal

    import threading
    
    local_school=threading.local
    
    def process_student():
        std = local_school.student
        print('Hello,%s (in %s)' % (std,threading.current_thread().name))
        
    def process_thread(name):
        local_school.student=name
        process_student()
    
    t1=threading.Thread(target=process_thread,args=('Alice',),name='Thread-A')
    t2=threading.Thread(target=process_thread,args=('Bob',),name='Thread-B')
    t1.start()
    t2.start()
    t1.join()
    t2.join()

    No9:

    分布式进程

    # task_master.py
    
    import random, time, queue
    from multiprocessing.managers import BaseManager
    
    # 发送任务的队列:
    task_queue = queue.Queue()
    # 接收结果的队列:
    result_queue = queue.Queue()
    
    # 从BaseManager继承的QueueManager:
    class QueueManager(BaseManager):
        pass
    
    # 把两个Queue都注册到网络上, callable参数关联了Queue对象:
    QueueManager.register('get_task_queue', callable=lambda: task_queue)
    QueueManager.register('get_result_queue', callable=lambda: result_queue)
    # 绑定端口5000, 设置验证码'abc':
    manager = QueueManager(address=('', 5000), authkey=b'abc')
    # 启动Queue:
    manager.start()
    # 获得通过网络访问的Queue对象:
    task = manager.get_task_queue()
    result = manager.get_result_queue()
    # 放几个任务进去:
    for i in range(10):
        n = random.randint(0, 10000)
        print('Put task %d...' % n)
        task.put(n)
    # 从result队列读取结果:
    print('Try get results...')
    for i in range(10):
        r = result.get(timeout=10)
        print('Result: %s' % r)
    # 关闭:
    manager.shutdown()
    print('master exit.')
    # task_worker.py
    
    import time, sys, queue
    from multiprocessing.managers import BaseManager
    
    # 创建类似的QueueManager:
    class QueueManager(BaseManager):
        pass
    
    # 由于这个QueueManager只从网络上获取Queue,所以注册时只提供名字:
    QueueManager.register('get_task_queue')
    QueueManager.register('get_result_queue')
    
    # 连接到服务器,也就是运行task_master.py的机器:
    server_addr = '127.0.0.1'
    print('Connect to server %s...' % server_addr)
    # 端口和验证码注意保持与task_master.py设置的完全一致:
    m = QueueManager(address=(server_addr, 5000), authkey=b'abc')
    # 从网络连接:
    m.connect()
    # 获取Queue的对象:
    task = m.get_task_queue()
    result = m.get_result_queue()
    # 从task队列取任务,并把结果写入result队列:
    for i in range(10):
        try:
            n = task.get(timeout=1)
            print('run task %d * %d...' % (n, n))
            r = '%d * %d = %d' % (n, n, n*n)
            time.sleep(1)
            result.put(r)
        except Queue.Empty:
            print('task queue is empty.')
    # 处理结束:
    print('worker exit.')
  • 相关阅读:
    datetime模块
    time模块
    shelve模块
    json&pickle 序列化
    re正则
    MQ常用命令
    MQ for linux安装与卸载【转】
    Linux下安装Oracle11g服务器【转】
    PLSQL_数据泵Datapump导入导出数据IMPDP / EXPDP(概念)(Oracle数据导入导出工具)[转]
    [LeetCode]:116:Populating Next Right Pointers in Each Node
  • 原文地址:https://www.cnblogs.com/anni-qianqian/p/9235574.html
Copyright © 2011-2022 走看看