zoukankan      html  css  js  c++  java
  • 从零开始自己搭建复杂网络2(以Tensorflow为例)

    从零开始自己搭建复杂网络(以DenseNet为例)

    DenseNet 是一种具有密集连接的卷积神经网络。在该网络中,任何两层之间都有直接的连接,也就是说,网络每一层的输入都是前面所有层输出的并集,

    而该层所学习的特征图也会被直接传给其后面所有层作为输入。

    DenseNet 在 ResNet 基础上,提出了更优秀的 shortcut 方式。Dense Connection 不仅能使得 feature 更加 robust ,还能带来更快的收敛速度。

    显存和计算量上稍显不足,需要业界进一步的优化才能广泛应用。

    我们使用slim框架来构建网络,进行slim官方的densenet代码的讲解。

    """Contains the definition of the DenseNet architecture.
    
    As described in https://arxiv.org/abs/1608.06993.
    
      Densely Connected Convolutional Networks
      Gao Huang, Zhuang Liu, Kilian Q. Weinberger, Laurens van der Maaten
    """

    那么,开始构建整体网络框架吧

    densenet的基本网络由以下代码构成

    def densenet(inputs,
                 num_classes=1000,
                 reduction=None,
                 growth_rate=None,
                 num_filters=None,
                 num_layers=None,
                 dropout_rate=None,
                 data_format='NHWC',
                 is_training=True,
                 reuse=None,
                 scope=None):
      assert reduction is not None
      assert growth_rate is not None
      assert num_filters is not None
      assert num_layers is not None
    
      compression = 1.0 - reduction
      num_dense_blocks = len(num_layers)
    
      if data_format == 'NCHW':
        inputs = tf.transpose(inputs, [0, 3, 1, 2])
    
      with tf.variable_scope(scope, 'densenetxxx', [inputs, num_classes],
                             reuse=reuse) as sc:
        end_points_collection = sc.name + '_end_points'
        with slim.arg_scope([slim.batch_norm, slim.dropout],
                             is_training=is_training), 
             slim.arg_scope([slim.conv2d, _conv, _conv_block,
                             _dense_block, _transition_block], 
                             outputs_collections=end_points_collection), 
             slim.arg_scope([_conv], dropout_rate=dropout_rate):
          net = inputs
    
          # initial convolution
          net = slim.conv2d(net, num_filters, 7, stride=2, scope='conv1')
          net = slim.batch_norm(net)
          net = tf.nn.relu(net)
          net = slim.max_pool2d(net, 3, stride=2, padding='SAME')
    
          # blocks
          for i in range(num_dense_blocks - 1):
            # dense blocks
            net, num_filters = _dense_block(net, num_layers[i], num_filters,
                                            growth_rate,
                                            scope='dense_block' + str(i+1))
    
            # Add transition_block
            net, num_filters = _transition_block(net, num_filters,
                                                 compression=compression,
                                                 scope='transition_block' + str(i+1))
    
          net, num_filters = _dense_block(
                  net, num_layers[-1], num_filters,
                  growth_rate,
                  scope='dense_block' + str(num_dense_blocks))
    
          # final blocks
          with tf.variable_scope('final_block', [inputs]):
            net = slim.batch_norm(net)
            net = tf.nn.relu(net)
            net = _global_avg_pool2d(net, scope='global_avg_pool')
    
          net = slim.conv2d(net, num_classes, 1,
                            biases_initializer=tf.zeros_initializer(),
                            scope='logits')
    
          end_points = slim.utils.convert_collection_to_dict(
              end_points_collection)
    
          if num_classes is not None:
            end_points['predictions'] = slim.softmax(net, scope='predictions')
    
          return net, end_points

     

    纵观论文的网络结构,Densenet由4个部分组成:

    • initial convolution
    • dense blocks
    • transition_block
    • final blocks

    初始卷积层拥有

    conv2d
    batch_norm
    relu
    max_pool2d
    这四个方法在开始定义了
    with slim.arg_scope([slim.batch_norm, slim.dropout],
                             is_training=is_training), 
             slim.arg_scope([slim.conv2d, _conv, _conv_block,
                             _dense_block, _transition_block], 
                             outputs_collections=end_points_collection), 
             slim.arg_scope([_conv], dropout_rate=dropout_rate):
    然后我们定义_dense_block
    @slim.add_arg_scope
    def _dense_block(inputs, num_layers, num_filters, growth_rate,
                     grow_num_filters=True, scope=None, outputs_collections=None):
    
      with tf.variable_scope(scope, 'dense_blockx', [inputs]) as sc:
        net = inputs
        for i in range(num_layers):
          branch = i + 1
          net = _conv_block(net, growth_rate, scope='conv_block'+str(branch))
    
          if grow_num_filters:
            num_filters += growth_rate
    
        net = slim.utils.collect_named_outputs(outputs_collections, sc.name, net)
    
      return net, num_filters
    _dense_block中由不同个数的_conv_block组成。拿densenet121来说,卷积的个数为[6,12,24,16]。
    _conv_block由一个1×1的卷积和3×3的卷积组合而成,之后将两个卷积融合起来。
    @slim.add_arg_scope
    def _conv_block(inputs, num_filters, data_format='NHWC', scope=None, outputs_collections=None):
      with tf.variable_scope(scope, 'conv_blockx', [inputs]) as sc:
        net = inputs
        net = _conv(net, num_filters*4, 1, scope='x1')
        net = _conv(net, num_filters, 3, scope='x2')
        if data_format == 'NHWC':
            #在某一个shape的第三个维度上连
          net = tf.concat([inputs, net], axis=3)
        else: # "NCHW"
          net = tf.concat([inputs, net], axis=1)
    
        net = slim.utils.collect_named_outputs(outputs_collections, sc.name, net)
    
      return net

    接着,我们构建_transition_block:

    @slim.add_arg_scope
    def _transition_block(inputs, num_filters, compression=1.0,
                          scope=None, outputs_collections=None):
    
      num_filters = int(num_filters * compression)
      with tf.variable_scope(scope, 'transition_blockx', [inputs]) as sc:
        net = inputs
        net = _conv(net, num_filters, 1, scope='blk')
    
        net = slim.avg_pool2d(net, 2)
    
        net = slim.utils.collect_named_outputs(outputs_collections, sc.name, net)
    
      return net, num_filters

    这个模块由一个1×1 的卷积对其维度,然后接平均池化。

    最后一层,我们使用1×1的卷积将输出维度与最后的分类数对其。

    # final blocks
          with tf.variable_scope('final_block', [inputs]):
            net = slim.batch_norm(net)
            net = tf.nn.relu(net)
            net = _global_avg_pool2d(net, scope='global_avg_pool')
    
          net = slim.conv2d(net, num_classes, 1,
                            biases_initializer=tf.zeros_initializer(),
                            scope='logits')
          net = tf.contrib.layers.flatten(net)

    Densenet的每个模块就介绍完毕了

    下面是全部的代码:

    # Copyright 2016 pudae. All Rights Reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    # http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    # ==============================================================================
    """Contains the definition of the DenseNet architecture.
    
    As described in https://arxiv.org/abs/1608.06993.
    
      Densely Connected Convolutional Networks
      Gao Huang, Zhuang Liu, Kilian Q. Weinberger, Laurens van der Maaten
    """
    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    
    import tensorflow as tf
    
    slim = tf.contrib.slim
    
    
    @slim.add_arg_scope
    def _global_avg_pool2d(inputs, data_format='NHWC', scope=None, outputs_collections=None):
      with tf.variable_scope(scope, 'xx', [inputs]) as sc:
        axis = [1, 2] if data_format == 'NHWC' else [2, 3]
        net = tf.reduce_mean(inputs, axis=axis, keepdims=True)
        net = slim.utils.collect_named_outputs(outputs_collections, sc.name, net)
        return net
    
    
    @slim.add_arg_scope
    def _conv(inputs, num_filters, kernel_size, stride=1, dropout_rate=None,
              scope=None, outputs_collections=None):
      with tf.variable_scope(scope, 'xx', [inputs]) as sc:
        net = slim.batch_norm(inputs)
        net = tf.nn.relu(net)
        net = slim.conv2d(net, num_filters, kernel_size)
    
        if dropout_rate:
          net = tf.nn.dropout(net)
    
        net = slim.utils.collect_named_outputs(outputs_collections, sc.name, net)
    
      return net
    
    
    @slim.add_arg_scope
    def _conv_block(inputs, num_filters, data_format='NHWC', scope=None, outputs_collections=None):
      with tf.variable_scope(scope, 'conv_blockx', [inputs]) as sc:
        net = inputs
        net = _conv(net, num_filters*4, 1, scope='x1')
        net = _conv(net, num_filters, 3, scope='x2')
        if data_format == 'NHWC':
          net = tf.concat([inputs, net], axis=3)
        else: # "NCHW"
          net = tf.concat([inputs, net], axis=1)
    
        net = slim.utils.collect_named_outputs(outputs_collections, sc.name, net)
    
      return net
    
    
    @slim.add_arg_scope
    def _dense_block(inputs, num_layers, num_filters, growth_rate,
                     grow_num_filters=True, scope=None, outputs_collections=None):
    
      with tf.variable_scope(scope, 'dense_blockx', [inputs]) as sc:
        net = inputs
        for i in range(num_layers):
          branch = i + 1
          net = _conv_block(net, growth_rate, scope='conv_block'+str(branch))
    
          if grow_num_filters:
            num_filters += growth_rate
    
        net = slim.utils.collect_named_outputs(outputs_collections, sc.name, net)
    
      return net, num_filters
    
    
    @slim.add_arg_scope
    def _transition_block(inputs, num_filters, compression=1.0,
                          scope=None, outputs_collections=None):
    
      num_filters = int(num_filters * compression)
      with tf.variable_scope(scope, 'transition_blockx', [inputs]) as sc:
        net = inputs
        net = _conv(net, num_filters, 1, scope='blk')
    
        net = slim.avg_pool2d(net, 2)
    
        net = slim.utils.collect_named_outputs(outputs_collections, sc.name, net)
    
      return net, num_filters
    
    
    def densenet(inputs,
                 num_classes=1000,
                 reduction=None,
                 growth_rate=None,
                 num_filters=None,
                 num_layers=None,
                 dropout_rate=None,
                 data_format='NHWC',
                 is_training=True,
                 reuse=None,
                 scope=None):
      assert reduction is not None
      assert growth_rate is not None
      assert num_filters is not None
      assert num_layers is not None
    
      compression = 1.0 - reduction
      num_dense_blocks = len(num_layers)
    
      if data_format == 'NCHW':
        inputs = tf.transpose(inputs, [0, 3, 1, 2])
    
      with tf.variable_scope(scope, 'densenetxxx', [inputs, num_classes],
                             reuse=reuse) as sc:
        end_points_collection = sc.name + '_end_points'
        with slim.arg_scope([slim.batch_norm, slim.dropout],
                             is_training=is_training), 
             slim.arg_scope([slim.conv2d, _conv, _conv_block,
                             _dense_block, _transition_block],
                             outputs_collections=end_points_collection), 
             slim.arg_scope([_conv], dropout_rate=dropout_rate):
          net = inputs
    
          # initial convolution
          net = slim.conv2d(net, num_filters, 7, stride=2, scope='conv1')
          net = slim.batch_norm(net)
          net = tf.nn.relu(net)
          net = slim.max_pool2d(net, 3, stride=2, padding='SAME')
    
          # blocks
          for i in range(num_dense_blocks - 1):
            # dense blocks
            net, num_filters = _dense_block(net, num_layers[i], num_filters,
                                            growth_rate,
                                            scope='dense_block' + str(i+1))
    
            # Add transition_block
            net, num_filters = _transition_block(net, num_filters,
                                                 compression=compression,
                                                 scope='transition_block' + str(i+1))
    
          net, num_filters = _dense_block(
                  net, num_layers[-1], num_filters,
                  growth_rate,
                  scope='dense_block' + str(num_dense_blocks))
    
          # final blocks
          with tf.variable_scope('final_block', [inputs]):
            net = slim.batch_norm(net)
            net = tf.nn.relu(net)
            net = _global_avg_pool2d(net, scope='global_avg_pool')
    
          net = slim.conv2d(net, num_classes, 1,
                            biases_initializer=tf.zeros_initializer(),
                            scope='logits')
          net = tf.contrib.layers.flatten(net)
          # print(net)
          end_points = slim.utils.convert_collection_to_dict(
              end_points_collection)
    
          if num_classes is not None:
            end_points['predictions'] = slim.softmax(net, scope='predictions')
    
          return net, end_points
    
    
    def densenet121(inputs, num_classes=1000, data_format='NHWC', is_training=True, reuse=None):
      return densenet(inputs,
                      num_classes=num_classes,
                      reduction=0.5,
                      growth_rate=32,
                      num_filters=64,
                      num_layers=[6,12,24,16],
                      data_format=data_format,
                      is_training=is_training,
                      reuse=reuse,
                      scope='densenet121')
    densenet121.default_image_size = 224
    
    
    def densenet161(inputs, num_classes=1000, data_format='NHWC', is_training=True, reuse=None):
      return densenet(inputs,
                      num_classes=num_classes,
                      reduction=0.5,
                      growth_rate=48,
                      num_filters=96,
                      num_layers=[6,12,36,24],
                      data_format=data_format,
                      is_training=is_training,
                      reuse=reuse,
                      scope='densenet161')
    densenet161.default_image_size = 224
    
    
    def densenet169(inputs, num_classes=1000, data_format='NHWC', is_training=True, reuse=None):
      return densenet(inputs,
                      num_classes=num_classes,
                      reduction=0.5,
                      growth_rate=32,
                      num_filters=64,
                      num_layers=[6,12,32,32],
                      data_format=data_format,
                      is_training=is_training,
                      reuse=reuse,
                      scope='densenet169')
    densenet169.default_image_size = 224
    
    
    def densenet_arg_scope(weight_decay=1e-4,
                           batch_norm_decay=0.99,
                           batch_norm_epsilon=1.1e-5,
                           data_format='NHWC'):
      with slim.arg_scope([slim.conv2d, slim.batch_norm, slim.avg_pool2d, slim.max_pool2d,
                           _conv_block, _global_avg_pool2d],
                          data_format=data_format):
        with slim.arg_scope([slim.conv2d],
                             weights_regularizer=slim.l2_regularizer(weight_decay),
                             activation_fn=None,
                             biases_initializer=None):
          with slim.arg_scope([slim.batch_norm],
                              scale=True,
                              decay=batch_norm_decay,
                              epsilon=batch_norm_epsilon) as scope:
            return scope

    
    


  • 相关阅读:
    JavaScript链式调用
    Javascript设计模式(2)-单体模式
    Javascript设计模式(1)
    stm32结合产品学习01—产品的框架
    【目标检测-模型对比1】R-CNN、SPPnet、Fast R-CNN、Faster R-CNN的对比
    【目标检测-框架测试】mmdetection的安装与使用
    【机器学习-笔记1】吴恩达网课笔记1——机器学习策略
    【算法】P1004 方格取数
    【算法】UVa 11624, Fire! 解题心得
    vector
  • 原文地址:https://www.cnblogs.com/ansang/p/9168986.html
Copyright © 2011-2022 走看看