zoukankan      html  css  js  c++  java
  • matplotlib画图

    matplotlib画图

    import numpy as np
    import matplotlib.pyplot as plt 
    x1=[20,33,51,79,101,121,132,145,162,182,203,219,232,243,256,270,287,310,325]
    y1=[49,48,48,48,48,87,106,123,155,191,233,261,278,284,297,307,341,319,341]
    x2=[31,52,73,92,101,112,126,140,153,175,186,196,215,230,240,270,288,300]
    y2=[48,48,48,48,49,89,162,237,302,378,443,472,522,597,628,661,690,702]
    x3=[30,50,70,90,105,114,128,137,147,159,170,180,190,200,210,230,243,259,284,297,311]
    y3=[48,48,48,48,66,173,351,472,586,712,804,899,994,1094,1198,1360,1458,1578,1734,1797,1892]
    x=np.arange(20,350)
    l1=plt.plot(x1,y1,'r--',label='type1')
    l2=plt.plot(x2,y2,'g--',label='type2')
    l3=plt.plot(x3,y3,'b--',label='type3')
    plt.plot(x1,y1,'ro-',x2,y2,'g+-',x3,y3,'b^-')
    plt.title('The Lasers in Three Conditions')
    plt.xlabel('row')
    plt.ylabel('column')
    plt.legend()
    plt.show()

    # -*- coding: UTF-8 -*-
    import numpy as np
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    
    #这里导入你自己的数据
    #......
    #......
    #x_axix,train_pn_dis这些都是长度相同的list()
    
    #开始画图
    sub_axix = filter(lambda x:x%200 == 0, x_axix)
    plt.title('Result Analysis')
    plt.plot(x_axix, train_acys, color='green', label='training accuracy')
    plt.plot(sub_axix, test_acys, color='red', label='testing accuracy')
    plt.plot(x_axix, train_pn_dis,  color='skyblue', label='PN distance')
    plt.plot(x_axix, thresholds, color='blue', label='threshold')
    plt.legend() # 显示图例
    
    plt.xlabel('iteration times')
    plt.ylabel('rate')
    plt.show()
    #python 一个折线图绘制多个曲线

  • 相关阅读:
    6-5 函数
    6-2 触发器
    4、MongoDB学习之备份还原
    3、MongoDB学习之固定集合
    2、MongoDB学习之索引的管理
    1、MongoDB学习之基本操作
    JS-01
    | 和 ||,& 和 && 的区别
    正则
    设计测试用例的经验总结
  • 原文地址:https://www.cnblogs.com/ansang/p/9882497.html
Copyright © 2011-2022 走看看