zoukankan      html  css  js  c++  java
  • Microsoft COCO 数据集

    本篇博客主要以介绍MS COCO数据集为目标,分为3个部分:COCO介绍,数据集分类和COCO展示

    本人主要下载了其2014年版本的数据,一共有20G左右的图片和500M左右的标签文件。标签文件标记了每个segmentation+bounding box的精确坐标,其精度均为小数点后两位。一个目标的标签示意如下:

    {"segmentation":[[392.87, 275.77, 402.24, 284.2, 382.54, 342.36, 375.99, 356.43, 372.23, 357.37, 372.23, 397.7, 383.48, 419.27,407.87, 439.91, 427.57, 389.25, 447.26, 346.11, 447.26, 328.29, 468.84, 290.77,472.59, 266.38], [429.44,465.23, 453.83, 473.67, 636.73, 474.61, 636.73, 392.07, 571.07, 364.88, 546.69,363.0]], "area": 28458.996150000003, "iscrowd": 0,"image_id": 503837, "bbox": [372.23, 266.38, 264.5,208.23], "category_id": 4, "id": 151109}, 

    具体的segmentation后面的数字到底是什么,说明有详细介绍,是分为RLE和Polygon两种形式的标签,具体标签说明见: http://mscoco.org/dataset/#download

    下面来介绍一下这个数据集。


    COCO简介:

    COCO数据集是微软团队获取的一个可以用来图像recognition+segmentation+captioning 数据集,其官方说明网址:http://mscoco.org/

    该数据集主要有的特点如下:(1)Object segmentation(2)Recognition in Context(3)Multiple objects per image(4)More than 300,000 images(5)More than 2 Million instances(6)80 object categories(7)5 captions per image(8)Keypoints on 100,000 people

    为了更好的介绍这个数据集,微软在ECCV Workshops里发表这篇文章:Microsoft COCO: Common Objects in Context。从这篇文章中,我们了解了这个数据集以scene understanding为目标,主要从复杂的日常场景中截取,图像中的目标通过精确的segmentation进行位置的标定。图像包括91类目标,328,000影像和2,500,000个label。

    该数据集主要解决3个问题:目标检测,目标之间的上下文关系,目标的2维上的精确定位。数据集的对比示意图:



    数据集分类:

    Image Classification:

    分类需要二进制的标签来确定目标是否在图像中。早期数据集主要是位于空白背景下的单一目标,如MNIST手写数据库,COIL household objects。在机器学习领域的著名数据集有CIFAR-10 and CIFAR-100,在32*32影像上分别提供10和100类。最近最著名的分类数据集即ImageNet,22,000类,每类500-1000影像。

    Object Detection:

    经典的情况下通过bounding box确定目标位置,期初主要用于人脸检测与行人检测,数据集如Caltech Pedestrian Dataset包含350,000个bounding box标签。PASCAL VOC数据包括20个目标超过11,000图像,超过27,000目标bounding box。最近还有ImageNet数据下获取的detection数据集,200类,400,000张图像,350,000个bounding box。由于一些目标之间有着强烈的关系而非独立存在,在特定场景下检测某种目标是是否有意义的,因此精确的位置信息比bounding box更加重要。

    Semantic scene labeling:

    这类问题需要pixel级别的标签,其中个别目标很难定义,如街道和草地。数据集主要包括室内场景和室外场景的,一些数据集包括深度信息。其中,SUN dataset包括908个场景类,3,819个常规目标类(person, chair, car)和语义场景类(wall, sky, floor),每类的数目具有较大的差别(这点COCO数据进行改进,保证每一类数据足够)。


    Other vision datasets:

    一些数据集如Middlebury datasets,包含立体相对,多视角立体像对和光流;同时还有Berkeley Segmentation Data Set (BSDS500),可以评价segmentation和edge detection算法


    COCO展示:

    该数据集标记流程如下:



    COCO数据集有91类,虽然比ImageNet和SUN类别少,但是每一类的图像多,这有利于获得更多的每类中位于某种特定场景的能力,对比PASCAL VOC,其有更多类和图像。

    COCO数据集分两部分发布,前部分于2014年发布,后部分于2015年,2014年版本:82,783 training, 40,504 validation, and 40,775 testing images,有270k的segmented people和886k的segmented object;2015年版本:165,482 train, 81,208 val, and 81,434 test images。

    其性能对比和一些例子:




  • 相关阅读:
    PythonのTkinter基本原理
    使用 Word (VBA) 分割长图到多页
    如何使用 Shebang Line (Python 虚拟环境)
    将常用的 VBScript 脚本放到任务栏 (Pin VBScript to Taskbar)
    关于 VBScript 中的 CreateObject
    Windows Scripting Host (WSH) 是什么?
    Component Object Model (COM) 是什么?
    IOS 打开中文 html 文件,显示乱码的问题
    科技发展时间线(Technology Timeline)
    列置换密码
  • 原文地址:https://www.cnblogs.com/antflow/p/7261859.html
Copyright © 2011-2022 走看看