zoukankan      html  css  js  c++  java
  • tf.expand_dims和tf.squeeze函数

    tf.expand_dims()

    Function

    tf.expand_dims(input, axis=None, name=None, dim=None)

    Inserts a dimension of 1 into a tensor’s shape. 
    在第axis位置增加一个维度

    Given a tensor input, this operation inserts a dimension of 1 at the dimension index axis of input’s shape. The dimension index axis starts at zero; if you specify a negative number for axis it is counted backward from the end.

    给定张量输入,此操作在输入形状的维度索引轴处插入1的尺寸。 尺寸索引轴从零开始; 如果您指定轴的负数,则从最后向后计数。

    This operation is useful if you want to add a batch dimension to a single element. For example, if you have a single image of shape [height, width, channels], you can make it a batch of 1 image with expand_dims(image, 0), which will make the shape [1, height, width, channels].

    如果要将批量维度添加到单个元素,则此操作非常有用。 例如,如果您有一个单一的形状[height,width,channels],您可以使用expand_dims(image,0)使其成为1个图像,这将使形状[1,高度,宽度,通道]。

    For example:

    # 't' is a tensor of shape [2]
    shape(expand_dims(t, 0)) ==> [1, 2]
    shape(expand_dims(t, 1)) ==> [2, 1]
    shape(expand_dims(t, -1)) ==> [2, 1]
    # 't2' is a tensor of shape [2, 3, 5]
    shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
    shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
    shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]
    

    Args:

    input: A Tensor. 
    axis: 0-D (scalar). Specifies the dimension index at which to expand the shape of input. 
    name: The name of the output Tensor. 
    dim: 0-D (scalar). Equivalent to axis, to be deprecated.

    输入:张量。
    轴:0-D(标量)。 指定扩大输入形状的维度索引。
    名称:输出名称Tensor。
    dim:0-D(标量)。 等同于轴,不推荐使用。

    Returns:

    A Tensor with the same data as input, but its shape has an additional dimension of size 1 added.

    tf.squeeze()

    Function

    tf.squeeze(input, squeeze_dims=None, name=None)

    Removes dimensions of size 1 from the shape of a tensor. 
    从tensor中删除所有大小是1的维度

    Given a tensor input, this operation returns a tensor of the same type with all dimensions of size 1 removed. If you don’t want to remove all size 1 dimensions, you can remove specific size 1 dimensions by specifying squeeze_dims. 

    给定张量输入,此操作返回相同类型的张量,并删除所有尺寸为1的尺寸。 如果不想删除所有尺寸1尺寸,可以通过指定squeeze_dims来删除特定尺寸1尺寸。
    如果不想删除所有大小是1的维度,可以通过squeeze_dims指定。

    For example:

    # 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
    shape(squeeze(t)) ==> [2, 3]
    Or, to remove specific size 1 dimensions:
    
    # 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
    shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1]
    

    Args:

    input: A Tensor. The input to squeeze. 
    squeeze_dims: An optional list of ints. Defaults to []. If specified, only squeezes the dimensions listed. The dimension index starts at 0. It is an error to squeeze a dimension that is not 1. 
    name: A name for the operation (optional).

    输入:张量。 输入要挤压。
    squeeze_dims:可选的ints列表。 默认为[]。 如果指定,只能挤压列出的尺寸。 维度索引从0开始。挤压不是1的维度是一个错误。
    名称:操作的名称(可选)。

    Returns:

    A Tensor. Has the same type as input. Contains the same data as input, but has one or more dimensions of size 1 removed.

    张量。 与输入的类型相同。 包含与输入相同的数据,但具有一个或多个删除尺寸1的维度。

  • 相关阅读:
    NetSuite Batch Process Status
    NetSuite generated bank files and the Bank Reconciliation process
    Global Search file content in Gitlab repositories, search across repositories, search across all files
    FedEx Package Rate Integration with NetSuite direct integrate by WebServices
    git Merge branches
    git tag and NetSuite deployment tracking
    API 读写cookie的方法
    C# 生成缩略图
    解决jquery操作checkbox全选全不选无法勾选问题
    JS读取写入删除Cookie方法
  • 原文地址:https://www.cnblogs.com/antflow/p/7263601.html
Copyright © 2011-2022 走看看