zoukankan      html  css  js  c++  java
  • 【计数】cf223C. Partial Sums

    考试时候遇到这种题只会找规律

    You've got an array a, consisting of n integers. The array elements are indexed from 1 to n. Let's determine a two step operation like that:

    1. First we build by the array a an array s of partial sums, consisting of n elements. Element number i (1 ≤ i ≤ n) of array s equals . The operation x mod y means that we take the remainder of the division of number x by number y.
    2. Then we write the contents of the array s to the array a. Element number i (1 ≤ i ≤ n) of the array s becomes the i-th element of the array a (ai = si).

    You task is to find array a after exactly k described operations are applied.

    Input

    The first line contains two space-separated integers n and k (1 ≤ n ≤ 2000, 0 ≤ k ≤ 109). The next line contains n space-separated integers a1, a2, ..., an — elements of the array a (0 ≤ ai ≤ 109).

    Output

    Print n integers  — elements of the array a after the operations are applied to it. Print the elements in the order of increasing of their indexes in the array a. Separate the printed numbers by spaces.


    题目分析

    可以从矩阵乘法开始想起,考虑转移矩阵,发现其主对角线下方全为0、元素按照次对角线对称。

    或者就是找规律

    3.16upd:

    总觉得一个经典模型不应该用找规律这么假的方式随随便便搞掉吧……

    网上的题解都是打表找规律 | 矩乘找规律 | dp找规律……

    来自ZZK的新的理解方式:$a_i$的贡献也就是它走到$s^p_j$的方案数量。

     1 #include<bits/stdc++.h>
     2 #define MO 1000000007
     3 const int maxn = 2035;
     4 
     5 int n,k,a[maxn],b[maxn],inv[maxn],fac[maxn],pre[maxn];
     6 
     7 void init()
     8 {
     9     fac[0] = fac[1] = inv[0] = inv[1] = 1;
    10     for (int i=2; i<=n; i++)
    11         fac[i] = 1ll*fac[i-1]*i%MO, 
    12         inv[i] = MO-1ll*(MO/i)*inv[MO%i]%MO;
    13     pre[0] = 1;
    14     for (int i=1; i<=n; i++)
    15         pre[i] = 1ll*pre[i-1]*(k%MO+i-1)%MO*inv[i]%MO;
    16 }
    17 int main()
    18 {
    19     scanf("%d%d",&n,&k);
    20     for (int i=1; i<=n; i++) scanf("%d",&a[i]), b[i] = a[i];
    21     if (k){
    22         init();
    23         for (int i=1; i<=n; i++)
    24         {
    25             b[i] = 0;
    26             for (int j=1; j<=i; j++)
    27                 b[i] = 1ll*(b[i]+1ll*pre[i-j]*a[j]%MO)%MO;
    28         }
    29     }
    30     for (int i=1; i<=n; i++) printf("%d ",b[i]);
    31     return 0;
    32 }

    END

  • 相关阅读:
    layui table表格 表头与内容列错位问题(只有纵向滚动条的情况)
    layui table+复杂表头+合并单元格
    echarts 柱状图
    1-jdk的安装与配置
    变量的解构赋值(对象)
    变量的解构赋值(数组)
    git常用命令
    markdown常用语法
    微信小程序全局/页面配置
    git使用简介(二)
  • 原文地址:https://www.cnblogs.com/antiquality/p/10539622.html
Copyright © 2011-2022 走看看