zoukankan      html  css  js  c++  java
  • float浮点数的二进制存储方式及转换

    int和float都是4字节32位表示形式。为什么float的范围大于int?

    float精度为6~7位。1.66*10^10的数字结果并不是166 0000 0000 指数越大,误差越大。

    这些问题,都是浮点数的存储方式造成的。  


        float和double在存储方式上都是遵从IEEE的规范的,float遵从的是IEEE R32.24 ,而double 遵从的是R64.53。

        无论是单精度还是双精度在存储中都分为三个部分:

    1. 符号位(Sign) : 0代表正,1代表为负
    2. 指数位(Exponent):用于存储科学计数法中的指数数据,并且采用移位存储
    3. 尾数部分(Mantissa):尾数部分

    其中float的存储方式如下图所示:

    float类型的存储方式

    而双精度的存储方式为:

     

    double类型数据的存储方式

     

           将一个float型转化为内存存储格式的步骤为:

         (1)先将这个实数的绝对值化为二进制格式。 
         (2)将这个二进制格式实数的小数点左移或右移n位,直到小数点移动到第一个有效数字的右边。 
         (3)从小数点右边第一位开始数出二十三位数字放入第22到第0位。 
         (4)如果实数是正的,则在第31位放入“0”,否则放入“1”。 
         (5)如果n 是左移得到的,说明指数是正的,第30位放入“1”。如果n是右移得到的或n=0,则第30位放入“0”。 
         (6)如果n是左移得到的,则将n减去1后化为二进制,并在左边加“0”补足七位,放入第29到第23位。如果n是右移得到的或n=0,则将n化为二进制后在左边加“0”补足七位,再各位求反,再放入第29到第23位。

         10进制科学计数法的尾数范围是1≤|a|<10,2进制科学计数法的尾数范围是1≤|a|<2.

         R32.24和R64.53的存储方式都是用科学计数法来存储数据的,比如8.25用十进制的科学计数法表示就为:8.25*clip_image0021,而120.5可以表示为:1.205*clip_image0022,计算机根本不认识十进制的数据,他只认识0,1,所以在计算机存储中,首先要将上面的数更改为二进制的科学计数法表示,8.25用二进制表示可表示为1000.01,120.5用二进制表示为:1110110.1用二进制的科学计数法表示1000.01可以表示为1.0001*clip_image002[2],1110110.1可以表示为1.1101101*clip_image002[3],任何一个数都的科学计数法表示都为1.xxx*clip_image002[1],尾数部分就可以表示为xxxx,第一位都是1嘛,干嘛还要表示呀?可以将小数点前面的1省略,所以23bit的尾数部分,可以表示的精度却变成了24bit,道理就是在这里,那24bit能精确到小数点后几位呢,我们知道9的二进制表示为1001,所以4bit能精确十进制中的1位小数点,24bit就能使float能精确到小数点后6位,而对于指数部分,因为指数可正可负,8位的指数位能表示的指数范围就应该为:-127-128了,所以指数部分的存储采用移位存储,存储的数据为元数据+127,下面就看看8.25和120.5在内存中真正的存储方式。

         首先看下8.25,用二进制的科学计数法表示为:1.0001*clip_image002[2]

    按照上面的存储方式,符号位为:0,表示为正,指数位为:3+127=130 ,位数部分为,故8.25的存储方式如下图所示:

    单精度浮点数8.25的存储方式

    而单精度浮点数120.5的存储方式如下图所示:

    单精度数120.5的存储方式


     将一个内存存储的float二进制格式转化为十进制的步骤: 
         (1)将第22位到第0位的二进制数写出来,在最左边补一位“1”,得到二十四位有效数字。将小数点点在最左边那个“1”的右边。 
         (2)取出第29到第23位所表示的值n。当30位是“0”时将n各位求反。当30位是“1”时将n增1。 
         (3)将小数点左移n位(当30位是“0”时)或右移n位(当30位是“1”时),得到一个二进制表示的实数。 
         (4)将这个二进制实数化为十进制,并根据第31位是“0”还是“1”加上正号或负号即可。

    那么如果给出内存中一段数据,并且告诉你是单精度存储的话,你如何知道该数据的十进制数值呢?其实就是对上面的反推过程,比如给出如下内存数据:0100001011101101000000000000,首先我们现将该数据分段,0 10000 0101 110 1101 0000 0000 0000 0000,在内存中的存储就为下图所示:

    浮点数的存储方式 float(转 - yanpol - yanpol的博客

    根据我们的计算方式,可以计算出,这样一组数据表示为:1.1101101*clip_image002[3]=120.5

    而双精度浮点数的存储和单精度的存储大同小异,不同的是指数部分和尾数部分的位数。所以这里不再详细的介绍双精度的存储方式了,只将120.5的最后存储方式图给出,大家可以仔细想想为何是这样子的

    文本框: 0     100 0000 0101    1101 1010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

    下面我就这个基础知识点来解决一个我们的一个疑惑,请看下面一段程序,注意观察输出结果

                float f = 2.2f;
                double d = (double)f;
                Console.WriteLine(d.ToString("0.0000000000000"));
                f = 2.25f;
                d = (double)f;
                Console.WriteLine(d.ToString("0.0000000000000"));

    可能输出的结果让大家疑惑不解,单精度的2.2转换为双精度后,精确到小数点后13位后变为了2.2000000476837,而单精度的2.25转换为双精度后,变为了2.2500000000000,为何2.2在转换后的数值更改了而2.25却没有更改呢?很奇怪吧?其实通过上面关于两种存储结果的介绍,我们已经大概能找到答案。首先我们看看2.25的单精度存储方式,很简单 0 1000 0001 001 0000 0000 0000 0000 0000,而2.25的双精度表示为:0 100 0000 0001 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000,这样2.25在进行强制转换的时候,数值是不会变的,而我们再看看2.2呢,2.2用科学计数法表示应该为:将十进制的小数转换为二进制的小数的方法为将小数*2,取整数部分,所以0.282=0.4,所以二进制小数第一位为0.4的整数部分0,0.4×2=0.8,第二位为0,0.8*2=1.6,第三位为1,0.6×2 = 1.2,第四位为1,0.2*2=0.4,第五位为0,这样永远也不可能乘到=1.0,得到的二进制是一个无限循环的排列 00110011001100110011... ,对于单精度数据来说,尾数只能表示24bit的精度,所以2.2的float存储为:

    单精度数202的存储方式

    但是这样存储方式,换算成十进制的值,却不会是2.2的,应为十进制在转换为二进制的时候可能会不准确,如2.2,而double类型的数据也存在同样的问题,所以在浮点数表示中会产生些许的误差,在单精度转换为双精度的时候,也会存在误差的问题,对于能够用二进制表示的十进制数据,如2.25,这个误差就会不存在,所以会出现上面比较奇怪的输出结果。


    附注:

     

    小数的二进制表示问题

           首先我们要搞清楚下面两个问题:

         (1)  十进制整数如何转化为二进制数

               算法很简单。举个例子,11表示成二进制数:

                         11/2=5   余   1

                           5/2=2   余   1

                           2/2=1   余   0

                           1/2=0   余   1

                              0结束         11二进制表示为(从下往上):1011

              这里提一点:只要遇到除以后的结果为0了就结束了,大家想一想,所有的整数除以2是不是一定能够最终得到0。换句话说,所有的整数转变为二进制数的算法会不会无限循环下去呢?绝对不会,整数永远可以用二进制精确表示 ,但小数就不一定了。

          (2) 十进制小数如何转化为二进制数

               算法是乘以2直到没有了小数为止。举个例子,0.9表示成二进制数

                         0.9*2=1.8   取整数部分  1

                         0.8(1.8的小数部分)*2=1.6    取整数部分  1

                         0.6*2=1.2   取整数部分  1

                         0.2*2=0.4   取整数部分  0

                         0.4*2=0.8   取整数部分  0

                         0.8*2=1.6   取整数部分  1

                         0.6*2=1.2   取整数部分  0

                                  .........      0.9二进制表示为(从上往下): 1100100100100......

               注意:上面的计算过程循环了,也就是说*2永远不可能消灭小数部分,这样算法将无限下去。很显然,小数的二进制表示有时是不可能精确的 。其实道理很简单,十进制系统中能不能准确表示出1/3呢?同样二进制系统也无法准确表示1/10。这也就解释了为什么浮点型减法出现了"减不尽"的精度丢失问题。

     

    数值存储原理可参照《计算机组成原理(白中英)》第二章 运算方法和运算器

  • 相关阅读:
    Power of Cryptography
    Radar Installation
    Emag eht htiw Em Pleh
    Help Me with the Game
    89. Gray Code
    87. Scramble String
    86. Partition List
    85. Maximal Rectangle
    84. Largest Rectangle in Histogram
    82. Remove Duplicates from Sorted List II
  • 原文地址:https://www.cnblogs.com/any91/p/7081560.html
Copyright © 2011-2022 走看看