zoukankan      html  css  js  c++  java
  • 漫谈 Clustering (番外篇): Vector Quantization

    在接下去说其他的聚类算法之前,让我们先插进来说一说一个有点跑题的东西:Vector Quantization。这项技术广泛地用在信号处理以及数据压缩等领域。事实上,在 JPEG 和 MPEG-4 等多媒体压缩格式里都有 VQ 这一步。

    Vector Quantization 这个名字听起来有些玄乎,其实它本身并没有这么高深。大家都知道,模拟信号是连续的值,而计算机只能处理离散的数字信号,在将模拟信号转换为数字信号的时候,我们可以用区间内的某一个值去代替着一个区间,比如,[0, 1) 上的所有值变为 0 ,[1, 2) 上的所有值变成 1 ,如此类推。其这就是一个 VQ 的过程。一个比较正式一点的定义是:VQ 是将一个向量空间中的点用其中的一个有限子集来进行编码的过程。

    一个典型的例子就是图像的编码。最简单的情况,考虑一个灰度图片,0 为黑色,1 为白色,每个像素的值为 [0, 1] 上的一个实数。现在要把它编码为 256 阶的灰阶图片,一个最简单的做法就是将每一个像素值 x 映射为一个整数 floor(x*255) 。当然,原始的数据空间也并不以一定要是连续的。比如,你现在想要把压缩这个图片,每个像素只使用 4 bit (而不是原来的 8 bit)来存储,因此,要将原来的 [0, 255] 区间上的整数值用 [0, 15] 上的整数值来进行编码,一个简单的映射方案是 x*15/255 。

    VQ 2

    VQ 2

    不过这样的映射方案颇有些 Naive ,虽然能减少颜色数量起到压缩的效果,但是如果原来的颜色并不是均匀分布的,那么的出来的图片质量可能并不是很好。例如,如果一个 256 阶灰阶图片完全由 0 和 13 两种颜色组成,那么通过上面的映射就会得到一个全黑的图片,因为两个颜色全都被映射到 0 了。一个更好的做法是结合聚类来选取代表性的点。

    实际做法就是:将每个像素点当作一个数据,跑一下 K-means ,得到 k 个 centroids ,然后用这些 centroids 的像素值来代替对应的 cluster 里的所有点的像素值。对于彩色图片来说,也可以用同样的方法来做,例如 RGB 三色的图片,每一个像素被当作是一个 3 维向量空间中的点。

    用本文开头那张 Rechard Stallman 大神的照片来做一下实验好了,VQ 2、VQ 10 和 VQ 100 三张图片分别显示聚类数目为 2 、10 和 100 时得到的结果,可以看到 VQ 100 已经和原图非常接近了。把原来的许多颜色值用 centroids 代替之后,总的颜色数量减少了,重复的颜色增加了,这种冗余正是压缩算法最喜欢的。考虑一种最简单的压缩办法:单独存储(比如 100 个)centroids 的颜色信息,然后每个像素点存储 centroid 的索引而不是颜色信息值,如果一个 RGB 颜色值需要 24 bits 来存放的话,每个(128 以内的)索引值只需要 7 bits 来存放,这样就起到了压缩的效果。

    VQ 100

    VQ 100

    VQ 10

    VQ 10

    实现代码很简单,直接使用了 SciPy 提供的 kmeans 和 vq 函数,图像读写用了 Python Image Library :

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    
    #!/usr/bin/python
     
    from scipy.cluster.vq import kmeans, vq
    from numpy import array, reshape, zeros
    from mltk import image
     
    vqclst = [2, 10, 100, 256]
     
    data = image.read('example.jpg')
    (height, width, channel) = data.shape
     
    data = reshape(data, (height*width, channel))
    for k in vqclst:
        print 'Generating vq-%d...' % k
        (centroids, distor) = kmeans(data, k)
        (code, distor) = vq(data, centroids)
        print 'distor: %.6f' % distor.sum()
        im_vq = centroids[code, :]
        image.write('result-%d.jpg' % k, reshape(im_vq,
            (height, width, channel)))

    当然,Vector Quantization 并不一定要用 K-means 来做,各种能用的聚类方法都可以用,只是 K-means 通常是最简单的,而且通常都够用了。

  • 相关阅读:
    122. Best Time to Buy and Sell Stock II
    121. Best Time to Buy and Sell Stock
    72. Edit Distance
    583. Delete Operation for Two Strings
    582. Kill Process
    indexDB基本用法
    浏览器的渲染原理
    js实现txt/excel文件下载
    git 常用命令
    nginx进入 配置目录时
  • 原文地址:https://www.cnblogs.com/anyview/p/5055379.html
Copyright © 2011-2022 走看看