100 numpy exercises
A joint effort of the numpy community
The goal is both to offer a quick reference for new and old users and to provide also a set of exercices for those who teach. If you remember having asked or answered a (short) problem, you can send a pull request. The format is:
#. Find indices of non-zero elements from [1,2,0,0,4,0] .. code:: python # Author: Somebody print(np.nonzero([1,2,0,0,4,0]))
Here is what the page looks like so far: http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html
Repository is at: https://github.com/rougier/numpy-100
Thanks to Michiaki Ariga, there is now a Julia version.
-
Import the numpy package under the name np (★☆☆)
import numpy as np
-
Print the numpy version and the configuration (★☆☆)
print(np.__version__) np.__config__.show()
-
Create a null vector of size 10 (★☆☆)
Z = np.zeros(10) print(Z)
-
How to get the documentation of the numpy add function from the command line ? (★☆☆)
python -c "import numpy; numpy.info(numpy.add)"
-
Create a null vector of size 10 but the fifth value which is 1 (★☆☆)
Z = np.zeros(10) Z[4] = 1 print(Z)
-
Create a vector with values ranging from 10 to 49 (★☆☆)
Z = np.arange(10,50) print(Z)
-
Reverse a vector (first element becomes last) (★☆☆)
Z = np.arange(50) Z = Z[::-1]
-
Create a 3x3 matrix with values ranging from 0 to 8 (★☆☆)
Z = np.arange(9).reshape(3,3) print(Z)
-
Find indices of non-zero elements from [1,2,0,0,4,0] (★☆☆)
nz = np.nonzero([1,2,0,0,4,0]) print(nz)
-
Create a 3x3 identity matrix (★☆☆)
Z = np.eye(3) print(Z)
-
Create a 3x3x3 array with random values (★☆☆)
Z = np.random.random((3,3,3)) print(Z)
-
Create a 10x10 array with random values and find the minimum and maximum values (★☆☆)
Z = np.random.random((10,10)) Zmin, Zmax = Z.min(), Z.max() print(Zmin, Zmax)
-
Create a random vector of size 30 and find the mean value (★☆☆)
Z = np.random.random(30) m = Z.mean() print(m)
-
Create a 2d array with 1 on the border and 0 inside (★☆☆)
Z = np.ones((10,10)) Z[1:-1,1:-1] = 0
-
What is the result of the following expression ? (★☆☆)
0 * np.nan np.nan == np.nan np.inf > np.nan np.nan - np.nan 0.3 == 3 * 0.1
-
Create a 5x5 matrix with values 1,2,3,4 just below the diagonal (★☆☆)
Z = np.diag(1+np.arange(4),k=-1) print(Z)
-
Create a 8x8 matrix and fill it with a checkerboard pattern (★☆☆)
Z = np.zeros((8,8),dtype=int) Z[1::2,::2] = 1 Z[::2,1::2] = 1 print(Z)
-
Consider a (6,7,8) shape array, what is the index (x,y,z) of the 100th element ?
print(np.unravel_index(100,(6,7,8)))
-
Create a checkerboard 8x8 matrix using the tile function (★☆☆)
Z = np.tile( np.array([[0,1],[1,0]]), (4,4)) print(Z)
-
Normalize a 5x5 random matrix (★☆☆)
Z = np.random.random((5,5)) Zmax, Zmin = Z.max(), Z.min() Z = (Z - Zmin)/(Zmax - Zmin) print(Z)
-
Multiply a 5x3 matrix by a 3x2 matrix (real matrix product) (★☆☆)
Z = np.dot(np.ones((5,3)), np.ones((3,2))) print(Z)
-
Create a 5x5 matrix with row values ranging from 0 to 4 (★★☆)
Z = np.zeros((5,5)) Z += np.arange(5) print(Z)
-
Consider a generator function that generates 10 integers and use it to build an array (★☆☆)
def generate(): for x in xrange(10): yield x Z = np.fromiter(generate(),dtype=float,count=-1) print(Z)
-
Create a vector of size 10 with values ranging from 0 to 1, both excluded (★★☆)
Z = np.linspace(0,1,12,endpoint=True)[1:-1] print(Z)
-
Create a random vector of size 10 and sort it (★★☆)
Z = np.random.random(10) Z.sort() print(Z)
-
Consider two random array A anb B, check if they are equal (★★☆)
A = np.random.randint(0,2,5) B = np.random.randint(0,2,5) equal = np.allclose(A,B) print(equal)
-
Make an array immutable (read-only) (★★☆)
Z = np.zeros(10) Z.flags.writeable = False Z[0] = 1
-
Consider a random 10x2 matrix representing cartesian coordinates, convert them to polar coordinates (★★☆)
Z = np.random.random((10,2)) X,Y = Z[:,0], Z[:,1] R = np.sqrt(X**2+Y**2) T = np.arctan2(Y,X) print(R) print(T)
-
Create random vector of size 10 and replace the maximum value by 0 (★★☆)
Z = np.random.random(10) Z[Z.argmax()] = 0 print(Z)
-
Create a structured array with x and y coordinates covering the [0,1]x[0,1] area (★★☆)
Z = np.zeros((10,10), [('x',float),('y',float)]) Z['x'], Z['y'] = np.meshgrid(np.linspace(0,1,10), np.linspace(0,1,10)) print(Z)
-
Print the minimum and maximum representable value for each numpy scalar type (★★☆)
for dtype in [np.int8, np.int32, np.int64]: print(np.iinfo(dtype).min) print(np.iinfo(dtype).max) for dtype in [np.float32, np.float64]: print(np.finfo(dtype).min) print(np.finfo(dtype).max) print(np.finfo(dtype).eps)
-
How to print all the values of an array ? (★★☆)
np.set_printoptions(threshold=np.nan) Z = np.zeros((25,25)) print(Z)
-
How to print all the values of an array ? (★★☆)
np.set_printoptions(threshold=np.nan) Z = np.zeros((25,25)) print(Z)
-
How to find the closest value (to a given scalar) in an array ? (★★☆)
Z = np.arange(100) v = np.random.uniform(0,100) index = (np.abs(Z-v)).argmin() print(Z[index])
-
Create a structured array representing a position (x,y) and a color (r,g,b) (★★☆)
Z = np.zeros(10, [ ('position', [ ('x', float, 1), ('y', float, 1)]), ('color', [ ('r', float, 1), ('g', float, 1), ('b', float, 1)])]) print(Z)
-
Consider a random vector with shape (100,2) representing coordinates, find point by point distances (★★☆)
Z = np.random.random((10,2)) X,Y = np.atleast_2d(Z[:,0]), np.atleast_2d(Z[:,1]) D = np.sqrt( (X-X.T)**2 + (Y-Y.T)**2) print(D) # Much faster with scipy import scipy # Thanks Gavin Heverly-Coulson (#issue 1) import scipy.spatial Z = np.random.random((10,2)) D = scipy.spatial.distance.cdist(Z,Z) print(D)
-
How to convert a float (32 bits) array into an integer (32 bits) in place ?
Z = np.arange(10, dtype=np.int32) Z = Z.astype(np.float32, copy=False)
-
Consider the following file:
1,2,3,4,5 6,,,7,8 ,,9,10,11
How to read it ? (★★☆)
Z = np.genfromtxt("missing.dat", delimiter=",")
-
What is the equivalent of enumerate for numpy arrays ? (★★☆)
Z = np.arange(9).reshape(3,3) for index, value in np.ndenumerate(Z): print(index, value) for index in np.ndindex(Z.shape): print(index, Z[index])
-
Generate a generic 2D Gaussian-like array (★★☆)
X, Y = np.meshgrid(np.linspace(-1,1,10), np.linspace(-1,1,10)) D = np.sqrt(X*X+Y*Y) sigma, mu = 1.0, 0.0 G = np.exp(-( (D-mu)**2 / ( 2.0 * sigma**2 ) ) ) print(G)
-
How to randomly place p elements in a 2D array ? (★★☆)
# Author: Divakar n = 10 p = 3 Z = np.zeros((n,n)) np.put(Z, np.random.choice(range(n*n), p, replace=False),1)
-
Subtract the mean of each row of a matrix (★★☆)
# Author: Warren Weckesser X = np.random.rand(5, 10) # Recent versions of numpy Y = X - X.mean(axis=1, keepdims=True) # Older versions of numpy Y = X - X.mean(axis=1).reshape(-1, 1)
-
How to I sort an array by the nth column ? (★★☆)
# Author: Steve Tjoa Z = np.random.randint(0,10,(3,3)) print(Z) print(Z[Z[:,1].argsort()])
-
How to tell if a given 2D array has null columns ? (★★☆)
# Author: Warren Weckesser Z = np.random.randint(0,3,(3,10)) print((~Z.any(axis=0)).any())
-
Find the nearest value from a given value in an array (★★☆)
Z = np.random.uniform(0,1,10) z = 0.5 m = Z.flat[np.abs(Z - z).argmin()] print(m)
-
Consider a given vector, how to add 1 to each element indexed by a second vector (be careful with repeated indices) ? (★★★)
# Author: Brett Olsen Z = np.ones(10) I = np.random.randint(0,len(Z),20) Z += np.bincount(I, minlength=len(Z)) print(Z)
-
How to accumulate elements of a vector (X) to an array (F) based on an index list (I) ? (★★★)
# Author: Alan G Isaac X = [1,2,3,4,5,6] I = [1,3,9,3,4,1] F = np.bincount(I,X) print(F)
-
Considering a (w,h,3) image of (dtype=ubyte), compute the number of unique colors (★★★)
# Author: Nadav Horesh w,h = 16,16 I = np.random.randint(0,2,(h,w,3)).astype(np.ubyte) F = I[...,0]*256*256 + I[...,1]*256 +I[...,2] n = len(np.unique(F)) print(np.unique(I))
-
Considering a four dimensions array, how to get sum over the last two axis at once ? (★★★)
A = np.random.randint(0,10,(3,4,3,4)) sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1) print(sum)
-
Considering a one-dimensional vector D, how to compute means of subsets of D using a vector S of same size describing subset indices ? (★★★)
# Author: Jaime Fernández del Río D = np.random.uniform(0,1,100) S = np.random.randint(0,10,100) D_sums = np.bincount(S, weights=D) D_counts = np.bincount(S) D_means = D_sums / D_counts print(D_means)
-
How to get the diagonal of a dot product ? (★★★)
# Author: Mathieu Blondel # Slow version np.diag(np.dot(A, B)) # Fast version np.sum(A * B.T, axis=1) # Faster version np.einsum("ij,ji->i", A, B).
-
Consider the vector [1, 2, 3, 4, 5], how to build a new vector with 3 consecutive zeros interleaved between each value ? (★★★)
# Author: Warren Weckesser Z = np.array([1,2,3,4,5]) nz = 3 Z0 = np.zeros(len(Z) + (len(Z)-1)*(nz)) Z0[::nz+1] = Z print(Z0)
-
Consider an array of dimension (5,5,3), how to mulitply it by an array with dimensions (5,5) ? (★★★)
A = np.ones((5,5,3)) B = 2*np.ones((5,5)) print(A * B[:,:,None])
-
How to swap two rows of an array ? (★★★)
# Author: Eelco Hoogendoorn A = np.arange(25).reshape(5,5) A[[0,1]] = A[[1,0]] print(A)
-
Consider a set of 10 triplets describing 10 triangles (with shared vertices), find the set of unique line segments composing all the triangles (★★★)
# Author: Nicolas P. Rougier faces = np.random.randint(0,100,(10,3)) F = np.roll(faces.repeat(2,axis=1),-1,axis=1) F = F.reshape(len(F)*3,2) F = np.sort(F,axis=1) G = F.view( dtype=[('p0',F.dtype),('p1',F.dtype)] ) G = np.unique(G) print(G)
-
Given an array C that is a bincount, how to produce an array A such that np.bincount(A) == C ? (★★★)
# Author: Jaime Fernández del Río C = np.bincount([1,1,2,3,4,4,6]) A = np.repeat(np.arange(len(C)), C) print(A)
-
How to compute averages using a sliding window over an array ? (★★★)
# Author: Jaime Fernández del Río def moving_average(a, n=3) : ret = np.cumsum(a, dtype=float) ret[n:] = ret[n:] - ret[:-n] return ret[n - 1:] / n Z = np.arange(20) print(moving_average(Z, n=3))
-
Consider a one-dimensional array Z, build a two-dimensional array whose first row is (Z[0],Z[1],Z[2]) and each subsequent row is shifted by 1 (last row should be (Z[-3],Z[-2],Z[-1]) (★★★)
# Author: Joe Kington / Erik Rigtorp from numpy.lib import stride_tricks def rolling(a, window): shape = (a.size - window + 1, window) strides = (a.itemsize, a.itemsize) return stride_tricks.as_strided(a, shape=shape, strides=strides) Z = rolling(np.arange(10), 3) print(Z)
-
How to negate a boolean, or to change the sign of a float inplace ? (★★★)
# Author: Nathaniel J. Smith Z = np.random.randint(0,2,100) np.logical_not(arr, out=arr) Z = np.random.uniform(-1.0,1.0,100) np.negative(arr, out=arr)
-
Consider 2 sets of points P0,P1 describing lines (2d) and a point p, how to compute distance from p to each line i (P0[i],P1[i]) ? (★★★)
def distance(P0, P1, p): T = P1 - P0 L = (T**2).sum(axis=1) U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L U = U.reshape(len(U),1) D = P0 + U*T - p return np.sqrt((D**2).sum(axis=1)) P0 = np.random.uniform(-10,10,(10,2)) P1 = np.random.uniform(-10,10,(10,2)) p = np.random.uniform(-10,10,( 1,2)) print(distance(P0, P1, p))
-
Consider 2 sets of points P0,P1 describing lines (2d) and a set of points P, how to compute distance from each point j (P[j]) to each line i (P0[i],P1[i]) ? (★★★)
# Author: Italmassov Kuanysh # based on distance function from previous question P0 = np.random.uniform(-10, 10, (10,2)) P1 = np.random.uniform(-10,10,(10,2)) p = np.random.uniform(-10, 10, (10,2)) print np.array([distance(P0,P1,p_i) for p_i in p])
-
Consider an arbitrary array, write a function that extract a subpart with a fixed shape and centered on a given element (pad with a fill value when necessary) (★★★)
# Author: Nicolas Rougier Z = np.random.randint(0,10,(10,10)) shape = (5,5) fill = 0 position = (1,1) R = np.ones(shape, dtype=Z.dtype)*fill P = np.array(list(position)).astype(int) Rs = np.array(list(R.shape)).astype(int) Zs = np.array(list(Z.shape)).astype(int) R_start = np.zeros((len(shape),)).astype(int) R_stop = np.array(list(shape)).astype(int) Z_start = (P-Rs//2) Z_stop = (P+Rs//2)+Rs%2 R_start = (R_start - np.minimum(Z_start,0)).tolist() Z_start = (np.maximum(Z_start,0)).tolist() R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist() Z_stop = (np.minimum(Z_stop,Zs)).tolist() r = [slice(start,stop) for start,stop in zip(R_start,R_stop)] z = [slice