zoukankan      html  css  js  c++  java
  • 222. Count Complete Tree Nodes

    https://leetcode.com/problems/count-complete-tree-nodes/#/description

    http://www.cnblogs.com/EdwardLiu/p/5058570.html

    iven a complete binary tree, count the number of nodes.
    
    Definition of a complete binary tree from Wikipedia:
    In a complete binary tree every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible. It can have between 1 and 2h nodes inclusive at the last level h.

    递归树高法

    复杂度

    时间 O(N) 空间 O(1)

    思路

    完全二叉树的一个性质是,如果左子树最左边的深度,等于右子树最右边的深度,说明这个二叉树是满的,即最后一层也是满的,则以该节点为根的树其节点一共有2^h-1个。如果不等于,则是左子树的节点数,加上右子树的节点数,加上自身这一个。

    注意

    • 这里在左节点递归时代入了上次计算的左子树最左深度减1,右节点递归的时候代入了上次计算的右子树最右深度减1,可以避免重复计算这些深度

    • 做2的幂时不要用Math.pow,这样会超时。用1<<height这个方法来得到2的幂

    /**
     * Definition for a binary tree node.
     * public class TreeNode {
     *     int val;
     *     TreeNode left;
     *     TreeNode right;
     *     TreeNode(int x) { val = x; }
     * }
     */
    public class Solution {
        public int countNodes(TreeNode root) {
            if (root == null) return 0;
            int leftHeight = countLeft(root);
            int rightHeight = countRight(root);
            if (leftHeight == rightHeight) { //perfect binary tree
                return (1<<leftHeight)-1;
            }
            else return countNodes(root.left) + countNodes(root.right) + 1;
        }
        
        public int countLeft(TreeNode root) {
            int res = 0;
            while (root != null) {
                res++;
                root = root.left;
            }
            return res;
        }
        
        public int countRight(TreeNode root) {
            int res = 0;
            while (root != null) {
                res++;
                root = root.right;
            }
            return res;
        }
        
    }
    

      

  • 相关阅读:
    sklearn的preprocessing模块--数据预处理
    [系列转载]一.建模前的数据清洗与处理
    2.2 数学科学的数学之矩阵-行列式
    4)函数极限与连续函数
    6)导数
    java编写基于netty的RPC框架
    购买阿里云 实现内网 穿透 仅86元/年,而且
    OAuth 2.0
    java中JVM内存管理(1)
    java实现,使用opencv合成全景图,前端使用krpano展示
  • 原文地址:https://www.cnblogs.com/apanda009/p/7098033.html
Copyright © 2011-2022 走看看