zoukankan      html  css  js  c++  java
  • Leetcode: Matchsticks to Square

    Remember the story of Little Match Girl? By now, you know exactly what matchsticks the little match girl has, 
    please find out a way you can make one square by using up all those matchsticks. You should not break any stick,
    but you can link them up, and each matchstick must be used exactly one time. Your input will be several matchsticks the girl has, represented with their stick length. Your output will either be
    true or false,
    to represent whether you could make one square using all the matchsticks the little match girl has. Example 1: Input: [1,1,2,2,2] Output: true Explanation: You can form a square with length 2, one side of the square came two sticks with length 1. Example 2: Input: [3,3,3,3,4] Output: false Explanation: You cannot find a way to form a square with all the matchsticks. Note: The length sum of the given matchsticks is in the range of 0 to 10^9. The length of the given matchstick array will not exceed 15.

    Better Solution: DFS, but only scan all the matches once! If a match can not make the 1st edge, then we do not discard it, we try 2nd, 3rd, 4th edge

    public boolean makesquare(int[] nums) {
        if (nums.length < 4) return false;
            
        int perimeter = 0;
        for (int ele : nums) perimeter += ele;
        if (perimeter % 4 != 0) return false;
            
        Arrays.sort(nums);
        int side = perimeter / 4;
    
        return makesquareSub(nums, nums.length - 1, new int[] {side, side, side, side});
    }
        
    private boolean makesquareSub(int[] nums, int i, int[] s) {
        if (i < 0) return s[0] == 0 && s[1] == 0 && s[2] == 0 && s[3] == 0;
            
        for (int j = 0; j < s.length; j++) {
            if (nums[i] > s[j]) continue;
            s[j] -= nums[i];
            if (makesquareSub(nums, i - 1, s)) return true;
            s[j] += nums[i];
        }
            
        return false;
    }
    

      

  • 相关阅读:
    CookieUtil.java
    观察者模式
    ELK日志分析系统
    Zookeeper安装配置及简单使用
    Zookeeper
    MBMD(MobileNet-based tracking by detection algorithm)作者答疑
    python代码迷之错误(ModuleNotFoundError: No module named 'caffe.proto')
    深度学习中易混概念小结
    Python爬虫小结
    VOT工具操作指南(踩过的坑)
  • 原文地址:https://www.cnblogs.com/apanda009/p/7806564.html
Copyright © 2011-2022 走看看