zoukankan      html  css  js  c++  java
  • arean.c

    glibc-2.14中的arean.c源代码,供研究malloc和free实现使用:

    /* Malloc implementation for multiple threads without lock contention.
       Copyright (C) 2001,2002,2003,2004,2005,2006,2007,2009,2010
       Free Software Foundation, Inc.
       This file is part of the GNU C Library.
       Contributed by Wolfram Gloger <wg@malloc.de>, 2001.
    
       The GNU C Library is free software; you can redistribute it and/or
       modify it under the terms of the GNU Lesser General Public License as
       published by the Free Software Foundation; either version 2.1 of the
       License, or (at your option) any later version.
    
       The GNU C Library is distributed in the hope that it will be useful,
       but WITHOUT ANY WARRANTY; without even the implied warranty of
       MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
       Lesser General Public License for more details.
    
       You should have received a copy of the GNU Lesser General Public
       License along with the GNU C Library; see the file COPYING.LIB.  If not,
       write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
       Boston, MA 02111-1307, USA.  */
    
    #include <stdbool.h>
    
    /* Compile-time constants.  */
    
    #define HEAP_MIN_SIZE (32*1024)
    #ifndef HEAP_MAX_SIZE
    # ifdef DEFAULT_MMAP_THRESHOLD_MAX
    #  define HEAP_MAX_SIZE (2 * DEFAULT_MMAP_THRESHOLD_MAX)
    # else
    #  define HEAP_MAX_SIZE (1024*1024) /* must be a power of two */
    # endif
    #endif
    
    /* HEAP_MIN_SIZE and HEAP_MAX_SIZE limit the size of mmap()ed heaps
       that are dynamically created for multi-threaded programs.  The
       maximum size must be a power of two, for fast determination of
       which heap belongs to a chunk.  It should be much larger than the
       mmap threshold, so that requests with a size just below that
       threshold can be fulfilled without creating too many heaps.  */
    
    
    #ifndef THREAD_STATS
    #define THREAD_STATS 0
    #endif
    
    /* If THREAD_STATS is non-zero, some statistics on mutex locking are
       computed.  */
    
    /***************************************************************************/
    
    #define top(ar_ptr) ((ar_ptr)->top)
    
    /* A heap is a single contiguous memory region holding (coalesceable)
       malloc_chunks.  It is allocated with mmap() and always starts at an
       address aligned to HEAP_MAX_SIZE.  Not used unless compiling with
       USE_ARENAS. */
    
    typedef struct _heap_info {
      mstate ar_ptr; /* Arena for this heap. */
      struct _heap_info *prev; /* Previous heap. */
      size_t size;   /* Current size in bytes. */
      size_t mprotect_size;	/* Size in bytes that has been mprotected
    			   PROT_READ|PROT_WRITE.  */
      /* Make sure the following data is properly aligned, particularly
         that sizeof (heap_info) + 2 * SIZE_SZ is a multiple of
         MALLOC_ALIGNMENT. */
      char pad[-6 * SIZE_SZ & MALLOC_ALIGN_MASK];
    } heap_info;
    
    /* Get a compile-time error if the heap_info padding is not correct
       to make alignment work as expected in sYSMALLOc.  */
    extern int sanity_check_heap_info_alignment[(sizeof (heap_info)
    					     + 2 * SIZE_SZ) % MALLOC_ALIGNMENT
    					    ? -1 : 1];
    
    /* Thread specific data */
    
    static tsd_key_t arena_key;
    static mutex_t list_lock;
    #ifdef PER_THREAD
    static size_t narenas;
    static mstate free_list;
    #endif
    
    #if THREAD_STATS
    static int stat_n_heaps;
    #define THREAD_STAT(x) x
    #else
    #define THREAD_STAT(x) do ; while(0)
    #endif
    
    /* Mapped memory in non-main arenas (reliable only for NO_THREADS). */
    static unsigned long arena_mem;
    
    /* Already initialized? */
    int __malloc_initialized = -1;
    
    /**************************************************************************/
    
    #if USE_ARENAS
    
    /* arena_get() acquires an arena and locks the corresponding mutex.
       First, try the one last locked successfully by this thread.  (This
       is the common case and handled with a macro for speed.)  Then, loop
       once over the circularly linked list of arenas.  If no arena is
       readily available, create a new one.  In this latter case, `size'
       is just a hint as to how much memory will be required immediately
       in the new arena. */
    
    #define arena_get(ptr, size) do { 
      arena_lookup(ptr); 
      arena_lock(ptr, size); 
    } while(0)
    
    #define arena_lookup(ptr) do { 
      Void_t *vptr = NULL; 
      ptr = (mstate)tsd_getspecific(arena_key, vptr); 
    } while(0)
    
    #ifdef PER_THREAD
    #define arena_lock(ptr, size) do { 
      if(ptr) 
        (void)mutex_lock(&ptr->mutex); 
      else 
        ptr = arena_get2(ptr, (size)); 
    } while(0)
    #else
    #define arena_lock(ptr, size) do { 
      if(ptr && !mutex_trylock(&ptr->mutex)) { 
        THREAD_STAT(++(ptr->stat_lock_direct)); 
      } else 
        ptr = arena_get2(ptr, (size)); 
    } while(0)
    #endif
    
    /* find the heap and corresponding arena for a given ptr */
    
    #define heap_for_ptr(ptr) 
     ((heap_info *)((unsigned long)(ptr) & ~(HEAP_MAX_SIZE-1)))
    #define arena_for_chunk(ptr) 
     (chunk_non_main_arena(ptr) ? heap_for_ptr(ptr)->ar_ptr : &main_arena)
    
    #else /* !USE_ARENAS */
    
    /* There is only one arena, main_arena. */
    
    #if THREAD_STATS
    #define arena_get(ar_ptr, sz) do { 
      ar_ptr = &main_arena; 
      if(!mutex_trylock(&ar_ptr->mutex)) 
        ++(ar_ptr->stat_lock_direct); 
      else { 
        (void)mutex_lock(&ar_ptr->mutex); 
        ++(ar_ptr->stat_lock_wait); 
      } 
    } while(0)
    #else
    #define arena_get(ar_ptr, sz) do { 
      ar_ptr = &main_arena; 
      (void)mutex_lock(&ar_ptr->mutex); 
    } while(0)
    #endif
    #define arena_for_chunk(ptr) (&main_arena)
    
    #endif /* USE_ARENAS */
    
    /**************************************************************************/
    
    #ifndef NO_THREADS
    
    /* atfork support.  */
    
    static __malloc_ptr_t (*save_malloc_hook) (size_t __size,
    					   __const __malloc_ptr_t);
    # if !defined _LIBC || (defined SHARED && !USE___THREAD)
    static __malloc_ptr_t (*save_memalign_hook) (size_t __align, size_t __size,
    					     __const __malloc_ptr_t);
    # endif
    static void           (*save_free_hook) (__malloc_ptr_t __ptr,
    					 __const __malloc_ptr_t);
    static Void_t*        save_arena;
    
    #ifdef ATFORK_MEM
    ATFORK_MEM;
    #endif
    
    /* Magic value for the thread-specific arena pointer when
       malloc_atfork() is in use.  */
    
    #define ATFORK_ARENA_PTR ((Void_t*)-1)
    
    /* The following hooks are used while the `atfork' handling mechanism
       is active. */
    
    static Void_t*
    malloc_atfork(size_t sz, const Void_t *caller)
    {
      Void_t *vptr = NULL;
      Void_t *victim;
    
      tsd_getspecific(arena_key, vptr);
      if(vptr == ATFORK_ARENA_PTR) {
        /* We are the only thread that may allocate at all.  */
        if(save_malloc_hook != malloc_check) {
          return _int_malloc(&main_arena, sz);
        } else {
          if(top_check()<0)
    	return 0;
          victim = _int_malloc(&main_arena, sz+1);
          return mem2mem_check(victim, sz);
        }
      } else {
        /* Suspend the thread until the `atfork' handlers have completed.
           By that time, the hooks will have been reset as well, so that
           mALLOc() can be used again. */
        (void)mutex_lock(&list_lock);
        (void)mutex_unlock(&list_lock);
        return public_mALLOc(sz);
      }
    }
    
    static void
    free_atfork(Void_t* mem, const Void_t *caller)
    {
      Void_t *vptr = NULL;
      mstate ar_ptr;
      mchunkptr p;                          /* chunk corresponding to mem */
    
      if (mem == 0)                              /* free(0) has no effect */
        return;
    
      p = mem2chunk(mem);         /* do not bother to replicate free_check here */
    
    #if HAVE_MMAP
      if (chunk_is_mmapped(p))                       /* release mmapped memory. */
      {
        munmap_chunk(p);
        return;
      }
    #endif
    
    #ifdef ATOMIC_FASTBINS
      ar_ptr = arena_for_chunk(p);
      tsd_getspecific(arena_key, vptr);
      _int_free(ar_ptr, p, vptr == ATFORK_ARENA_PTR);
    #else
      ar_ptr = arena_for_chunk(p);
      tsd_getspecific(arena_key, vptr);
      if(vptr != ATFORK_ARENA_PTR)
        (void)mutex_lock(&ar_ptr->mutex);
      _int_free(ar_ptr, p);
      if(vptr != ATFORK_ARENA_PTR)
        (void)mutex_unlock(&ar_ptr->mutex);
    #endif
    }
    
    
    /* Counter for number of times the list is locked by the same thread.  */
    static unsigned int atfork_recursive_cntr;
    
    /* The following two functions are registered via thread_atfork() to
       make sure that the mutexes remain in a consistent state in the
       fork()ed version of a thread.  Also adapt the malloc and free hooks
       temporarily, because the `atfork' handler mechanism may use
       malloc/free internally (e.g. in LinuxThreads). */
    
    static void
    ptmalloc_lock_all (void)
    {
      mstate ar_ptr;
    
      if(__malloc_initialized < 1)
        return;
      if (mutex_trylock(&list_lock))
        {
          Void_t *my_arena;
          tsd_getspecific(arena_key, my_arena);
          if (my_arena == ATFORK_ARENA_PTR)
    	/* This is the same thread which already locks the global list.
    	   Just bump the counter.  */
    	goto out;
    
          /* This thread has to wait its turn.  */
          (void)mutex_lock(&list_lock);
        }
      for(ar_ptr = &main_arena;;) {
        (void)mutex_lock(&ar_ptr->mutex);
        ar_ptr = ar_ptr->next;
        if(ar_ptr == &main_arena) break;
      }
      save_malloc_hook = __malloc_hook;
      save_free_hook = __free_hook;
      __malloc_hook = malloc_atfork;
      __free_hook = free_atfork;
      /* Only the current thread may perform malloc/free calls now. */
      tsd_getspecific(arena_key, save_arena);
      tsd_setspecific(arena_key, ATFORK_ARENA_PTR);
     out:
      ++atfork_recursive_cntr;
    }
    
    static void
    ptmalloc_unlock_all (void)
    {
      mstate ar_ptr;
    
      if(__malloc_initialized < 1)
        return;
      if (--atfork_recursive_cntr != 0)
        return;
      tsd_setspecific(arena_key, save_arena);
      __malloc_hook = save_malloc_hook;
      __free_hook = save_free_hook;
      for(ar_ptr = &main_arena;;) {
        (void)mutex_unlock(&ar_ptr->mutex);
        ar_ptr = ar_ptr->next;
        if(ar_ptr == &main_arena) break;
      }
      (void)mutex_unlock(&list_lock);
    }
    
    #ifdef __linux__
    
    /* In NPTL, unlocking a mutex in the child process after a
       fork() is currently unsafe, whereas re-initializing it is safe and
       does not leak resources.  Therefore, a special atfork handler is
       installed for the child. */
    
    static void
    ptmalloc_unlock_all2 (void)
    {
      mstate ar_ptr;
    
      if(__malloc_initialized < 1)
        return;
    #if defined _LIBC || defined MALLOC_HOOKS
      tsd_setspecific(arena_key, save_arena);
      __malloc_hook = save_malloc_hook;
      __free_hook = save_free_hook;
    #endif
    #ifdef PER_THREAD
      free_list = NULL;
    #endif
      for(ar_ptr = &main_arena;;) {
        mutex_init(&ar_ptr->mutex);
    #ifdef PER_THREAD
        if (ar_ptr != save_arena) {
          ar_ptr->next_free = free_list;
          free_list = ar_ptr;
        }
    #endif
        ar_ptr = ar_ptr->next;
        if(ar_ptr == &main_arena) break;
      }
      mutex_init(&list_lock);
      atfork_recursive_cntr = 0;
    }
    
    #else
    
    #define ptmalloc_unlock_all2 ptmalloc_unlock_all
    
    #endif
    
    #endif /* !defined NO_THREADS */
    
    /* Initialization routine. */
    #ifdef _LIBC
    #include <string.h>
    extern char **_environ;
    
    static char *
    internal_function
    next_env_entry (char ***position)
    {
      char **current = *position;
      char *result = NULL;
    
      while (*current != NULL)
        {
          if (__builtin_expect ((*current)[0] == 'M', 0)
    	  && (*current)[1] == 'A'
    	  && (*current)[2] == 'L'
    	  && (*current)[3] == 'L'
    	  && (*current)[4] == 'O'
    	  && (*current)[5] == 'C'
    	  && (*current)[6] == '_')
    	{
    	  result = &(*current)[7];
    
    	  /* Save current position for next visit.  */
    	  *position = ++current;
    
    	  break;
    	}
    
          ++current;
        }
    
      return result;
    }
    #endif /* _LIBC */
    
    /* Set up basic state so that _int_malloc et al can work.  */
    static void
    ptmalloc_init_minimal (void)
    {
    #if DEFAULT_TOP_PAD != 0
      mp_.top_pad        = DEFAULT_TOP_PAD;
    #endif
      mp_.n_mmaps_max    = DEFAULT_MMAP_MAX;
      mp_.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
      mp_.trim_threshold = DEFAULT_TRIM_THRESHOLD;
      mp_.pagesize       = malloc_getpagesize;
    #ifdef PER_THREAD
    # define NARENAS_FROM_NCORES(n) ((n) * (sizeof(long) == 4 ? 2 : 8))
      mp_.arena_test     = NARENAS_FROM_NCORES (1);
      narenas = 1;
    #endif
    }
    
    
    #ifdef _LIBC
    # ifdef SHARED
    static void *
    __failing_morecore (ptrdiff_t d)
    {
      return (void *) MORECORE_FAILURE;
    }
    
    extern struct dl_open_hook *_dl_open_hook;
    libc_hidden_proto (_dl_open_hook);
    # endif
    
    # if defined SHARED && !USE___THREAD
    /* This is called by __pthread_initialize_minimal when it needs to use
       malloc to set up the TLS state.  We cannot do the full work of
       ptmalloc_init (below) until __pthread_initialize_minimal has finished,
       so it has to switch to using the special startup-time hooks while doing
       those allocations.  */
    void
    __libc_malloc_pthread_startup (bool first_time)
    {
      if (first_time)
        {
          ptmalloc_init_minimal ();
          save_malloc_hook = __malloc_hook;
          save_memalign_hook = __memalign_hook;
          save_free_hook = __free_hook;
          __malloc_hook = malloc_starter;
          __memalign_hook = memalign_starter;
          __free_hook = free_starter;
        }
      else
        {
          __malloc_hook = save_malloc_hook;
          __memalign_hook = save_memalign_hook;
          __free_hook = save_free_hook;
        }
    }
    # endif
    #endif
    
    static void
    ptmalloc_init (void)
    {
    #if __STD_C
      const char* s;
    #else
      char* s;
    #endif
      int secure = 0;
    
      if(__malloc_initialized >= 0) return;
      __malloc_initialized = 0;
    
    #ifdef _LIBC
    # if defined SHARED && !USE___THREAD
      /* ptmalloc_init_minimal may already have been called via
         __libc_malloc_pthread_startup, above.  */
      if (mp_.pagesize == 0)
    # endif
    #endif
        ptmalloc_init_minimal();
    
    #ifndef NO_THREADS
    # if defined _LIBC
      /* We know __pthread_initialize_minimal has already been called,
         and that is enough.  */
    #   define NO_STARTER
    # endif
    # ifndef NO_STARTER
      /* With some threads implementations, creating thread-specific data
         or initializing a mutex may call malloc() itself.  Provide a
         simple starter version (realloc() won't work). */
      save_malloc_hook = __malloc_hook;
      save_memalign_hook = __memalign_hook;
      save_free_hook = __free_hook;
      __malloc_hook = malloc_starter;
      __memalign_hook = memalign_starter;
      __free_hook = free_starter;
    #  ifdef _LIBC
      /* Initialize the pthreads interface. */
      if (__pthread_initialize != NULL)
        __pthread_initialize();
    #  endif /* !defined _LIBC */
    # endif	/* !defined NO_STARTER */
    #endif /* !defined NO_THREADS */
      mutex_init(&main_arena.mutex);
      main_arena.next = &main_arena;
    
    #if defined _LIBC && defined SHARED
      /* In case this libc copy is in a non-default namespace, never use brk.
         Likewise if dlopened from statically linked program.  */
      Dl_info di;
      struct link_map *l;
    
      if (_dl_open_hook != NULL
          || (_dl_addr (ptmalloc_init, &di, &l, NULL) != 0
    	  && l->l_ns != LM_ID_BASE))
        __morecore = __failing_morecore;
    #endif
    
      mutex_init(&list_lock);
      tsd_key_create(&arena_key, NULL);
      tsd_setspecific(arena_key, (Void_t *)&main_arena);
      thread_atfork(ptmalloc_lock_all, ptmalloc_unlock_all, ptmalloc_unlock_all2);
    #ifndef NO_THREADS
    # ifndef NO_STARTER
      __malloc_hook = save_malloc_hook;
      __memalign_hook = save_memalign_hook;
      __free_hook = save_free_hook;
    # else
    #  undef NO_STARTER
    # endif
    #endif
    #ifdef _LIBC
      secure = __libc_enable_secure;
      s = NULL;
      if (__builtin_expect (_environ != NULL, 1))
        {
          char **runp = _environ;
          char *envline;
    
          while (__builtin_expect ((envline = next_env_entry (&runp)) != NULL,
    			       0))
    	{
    	  size_t len = strcspn (envline, "=");
    
    	  if (envline[len] != '=')
    	    /* This is a "MALLOC_" variable at the end of the string
    	       without a '=' character.  Ignore it since otherwise we
    	       will access invalid memory below.  */
    	    continue;
    
    	  switch (len)
    	    {
    	    case 6:
    	      if (memcmp (envline, "CHECK_", 6) == 0)
    		s = &envline[7];
    	      break;
    	    case 8:
    	      if (! secure)
    		{
    		  if (memcmp (envline, "TOP_PAD_", 8) == 0)
    		    mALLOPt(M_TOP_PAD, atoi(&envline[9]));
    		  else if (memcmp (envline, "PERTURB_", 8) == 0)
    		    mALLOPt(M_PERTURB, atoi(&envline[9]));
    		}
    	      break;
    	    case 9:
    	      if (! secure)
    		{
    		  if (memcmp (envline, "MMAP_MAX_", 9) == 0)
    		    mALLOPt(M_MMAP_MAX, atoi(&envline[10]));
    #ifdef PER_THREAD
    		  else if (memcmp (envline, "ARENA_MAX", 9) == 0)
    		    mALLOPt(M_ARENA_MAX, atoi(&envline[10]));
    #endif
    		}
    	      break;
    #ifdef PER_THREAD
    	    case 10:
    	      if (! secure)
    		{
    		  if (memcmp (envline, "ARENA_TEST", 10) == 0)
    		    mALLOPt(M_ARENA_TEST, atoi(&envline[11]));
    		}
    	      break;
    #endif
    	    case 15:
    	      if (! secure)
    		{
    		  if (memcmp (envline, "TRIM_THRESHOLD_", 15) == 0)
    		    mALLOPt(M_TRIM_THRESHOLD, atoi(&envline[16]));
    		  else if (memcmp (envline, "MMAP_THRESHOLD_", 15) == 0)
    		    mALLOPt(M_MMAP_THRESHOLD, atoi(&envline[16]));
    		}
    	      break;
    	    default:
    	      break;
    	    }
    	}
        }
    #else
      if (! secure)
        {
          if((s = getenv("MALLOC_TRIM_THRESHOLD_")))
    	mALLOPt(M_TRIM_THRESHOLD, atoi(s));
          if((s = getenv("MALLOC_TOP_PAD_")))
    	mALLOPt(M_TOP_PAD, atoi(s));
          if((s = getenv("MALLOC_PERTURB_")))
    	mALLOPt(M_PERTURB, atoi(s));
          if((s = getenv("MALLOC_MMAP_THRESHOLD_")))
    	mALLOPt(M_MMAP_THRESHOLD, atoi(s));
          if((s = getenv("MALLOC_MMAP_MAX_")))
    	mALLOPt(M_MMAP_MAX, atoi(s));
        }
      s = getenv("MALLOC_CHECK_");
    #endif
      if(s && s[0]) {
        mALLOPt(M_CHECK_ACTION, (int)(s[0] - '0'));
        if (check_action != 0)
          __malloc_check_init();
      }
      void (*hook) (void) = force_reg (__malloc_initialize_hook);
      if (hook != NULL)
        (*hook)();
      __malloc_initialized = 1;
    }
    
    /* There are platforms (e.g. Hurd) with a link-time hook mechanism. */
    #ifdef thread_atfork_static
    thread_atfork_static(ptmalloc_lock_all, ptmalloc_unlock_all, 
    		     ptmalloc_unlock_all2)
    #endif
    
    
    
    /* Managing heaps and arenas (for concurrent threads) */
    
    #if USE_ARENAS
    
    #if MALLOC_DEBUG > 1
    
    /* Print the complete contents of a single heap to stderr. */
    
    static void
    #if __STD_C
    dump_heap(heap_info *heap)
    #else
    dump_heap(heap) heap_info *heap;
    #endif
    {
      char *ptr;
      mchunkptr p;
    
      fprintf(stderr, "Heap %p, size %10lx:
    ", heap, (long)heap->size);
      ptr = (heap->ar_ptr != (mstate)(heap+1)) ?
        (char*)(heap + 1) : (char*)(heap + 1) + sizeof(struct malloc_state);
      p = (mchunkptr)(((unsigned long)ptr + MALLOC_ALIGN_MASK) &
    		  ~MALLOC_ALIGN_MASK);
      for(;;) {
        fprintf(stderr, "chunk %p size %10lx", p, (long)p->size);
        if(p == top(heap->ar_ptr)) {
          fprintf(stderr, " (top)
    ");
          break;
        } else if(p->size == (0|PREV_INUSE)) {
          fprintf(stderr, " (fence)
    ");
          break;
        }
        fprintf(stderr, "
    ");
        p = next_chunk(p);
      }
    }
    
    #endif /* MALLOC_DEBUG > 1 */
    
    /* If consecutive mmap (0, HEAP_MAX_SIZE << 1, ...) calls return decreasing
       addresses as opposed to increasing, new_heap would badly fragment the
       address space.  In that case remember the second HEAP_MAX_SIZE part
       aligned to HEAP_MAX_SIZE from last mmap (0, HEAP_MAX_SIZE << 1, ...)
       call (if it is already aligned) and try to reuse it next time.  We need
       no locking for it, as kernel ensures the atomicity for us - worst case
       we'll call mmap (addr, HEAP_MAX_SIZE, ...) for some value of addr in
       multiple threads, but only one will succeed.  */
    static char *aligned_heap_area;
    
    /* Create a new heap.  size is automatically rounded up to a multiple
       of the page size. */
    
    static heap_info *
    internal_function
    #if __STD_C
    new_heap(size_t size, size_t top_pad)
    #else
    new_heap(size, top_pad) size_t size, top_pad;
    #endif
    {
      size_t page_mask = malloc_getpagesize - 1;
      char *p1, *p2;
      unsigned long ul;
      heap_info *h;
    
      if(size+top_pad < HEAP_MIN_SIZE)
        size = HEAP_MIN_SIZE;
      else if(size+top_pad <= HEAP_MAX_SIZE)
        size += top_pad;
      else if(size > HEAP_MAX_SIZE)
        return 0;
      else
        size = HEAP_MAX_SIZE;
      size = (size + page_mask) & ~page_mask;
    
      /* A memory region aligned to a multiple of HEAP_MAX_SIZE is needed.
         No swap space needs to be reserved for the following large
         mapping (on Linux, this is the case for all non-writable mappings
         anyway). */
      p2 = MAP_FAILED;
      if(aligned_heap_area) {
        p2 = (char *)MMAP(aligned_heap_area, HEAP_MAX_SIZE, PROT_NONE,
    		      MAP_PRIVATE|MAP_NORESERVE);
        aligned_heap_area = NULL;
        if (p2 != MAP_FAILED && ((unsigned long)p2 & (HEAP_MAX_SIZE-1))) {
          munmap(p2, HEAP_MAX_SIZE);
          p2 = MAP_FAILED;
        }
      }
      if(p2 == MAP_FAILED) {
        p1 = (char *)MMAP(0, HEAP_MAX_SIZE<<1, PROT_NONE,
    		      MAP_PRIVATE|MAP_NORESERVE);
        if(p1 != MAP_FAILED) {
          p2 = (char *)(((unsigned long)p1 + (HEAP_MAX_SIZE-1))
    		    & ~(HEAP_MAX_SIZE-1));
          ul = p2 - p1;
          if (ul)
    	munmap(p1, ul);
          else
    	aligned_heap_area = p2 + HEAP_MAX_SIZE;
          munmap(p2 + HEAP_MAX_SIZE, HEAP_MAX_SIZE - ul);
        } else {
          /* Try to take the chance that an allocation of only HEAP_MAX_SIZE
    	 is already aligned. */
          p2 = (char *)MMAP(0, HEAP_MAX_SIZE, PROT_NONE, MAP_PRIVATE|MAP_NORESERVE);
          if(p2 == MAP_FAILED)
    	return 0;
          if((unsigned long)p2 & (HEAP_MAX_SIZE-1)) {
    	munmap(p2, HEAP_MAX_SIZE);
    	return 0;
          }
        }
      }
      if(mprotect(p2, size, PROT_READ|PROT_WRITE) != 0) {
        munmap(p2, HEAP_MAX_SIZE);
        return 0;
      }
      h = (heap_info *)p2;
      h->size = size;
      h->mprotect_size = size;
      THREAD_STAT(stat_n_heaps++);
      return h;
    }
    
    /* Grow a heap.  size is automatically rounded up to a
       multiple of the page size. */
    
    static int
    #if __STD_C
    grow_heap(heap_info *h, long diff)
    #else
    grow_heap(h, diff) heap_info *h; long diff;
    #endif
    {
      size_t page_mask = malloc_getpagesize - 1;
      long new_size;
    
      diff = (diff + page_mask) & ~page_mask;
      new_size = (long)h->size + diff;
      if((unsigned long) new_size > (unsigned long) HEAP_MAX_SIZE)
        return -1;
      if((unsigned long) new_size > h->mprotect_size) {
        if (mprotect((char *)h + h->mprotect_size,
    		 (unsigned long) new_size - h->mprotect_size,
    		 PROT_READ|PROT_WRITE) != 0)
          return -2;
        h->mprotect_size = new_size;
      }
    
      h->size = new_size;
      return 0;
    }
    
    /* Shrink a heap.  */
    
    static int
    #if __STD_C
    shrink_heap(heap_info *h, long diff)
    #else
    shrink_heap(h, diff) heap_info *h; long diff;
    #endif
    {
      long new_size;
    
      new_size = (long)h->size - diff;
      if(new_size < (long)sizeof(*h))
        return -1;
      /* Try to re-map the extra heap space freshly to save memory, and
         make it inaccessible. */
    #ifdef _LIBC
      if (__builtin_expect (__libc_enable_secure, 0))
    #else
      if (1)
    #endif
        {
          if((char *)MMAP((char *)h + new_size, diff, PROT_NONE,
    		      MAP_PRIVATE|MAP_FIXED) == (char *) MAP_FAILED)
    	return -2;
          h->mprotect_size = new_size;
        }
    #ifdef _LIBC
      else
        madvise ((char *)h + new_size, diff, MADV_DONTNEED);
    #endif
      /*fprintf(stderr, "shrink %p %08lx
    ", h, new_size);*/
    
      h->size = new_size;
      return 0;
    }
    
    /* Delete a heap. */
    
    #define delete_heap(heap) 
      do {								
        if ((char *)(heap) + HEAP_MAX_SIZE == aligned_heap_area)	
          aligned_heap_area = NULL;					
        munmap((char*)(heap), HEAP_MAX_SIZE);			
      } while (0)
    
    static int
    internal_function
    #if __STD_C
    heap_trim(heap_info *heap, size_t pad)
    #else
    heap_trim(heap, pad) heap_info *heap; size_t pad;
    #endif
    {
      mstate ar_ptr = heap->ar_ptr;
      unsigned long pagesz = mp_.pagesize;
      mchunkptr top_chunk = top(ar_ptr), p, bck, fwd;
      heap_info *prev_heap;
      long new_size, top_size, extra;
    
      /* Can this heap go away completely? */
      while(top_chunk == chunk_at_offset(heap, sizeof(*heap))) {
        prev_heap = heap->prev;
        p = chunk_at_offset(prev_heap, prev_heap->size - (MINSIZE-2*SIZE_SZ));
        assert(p->size == (0|PREV_INUSE)); /* must be fencepost */
        p = prev_chunk(p);
        new_size = chunksize(p) + (MINSIZE-2*SIZE_SZ);
        assert(new_size>0 && new_size<(long)(2*MINSIZE));
        if(!prev_inuse(p))
          new_size += p->prev_size;
        assert(new_size>0 && new_size<HEAP_MAX_SIZE);
        if(new_size + (HEAP_MAX_SIZE - prev_heap->size) < pad + MINSIZE + pagesz)
          break;
        ar_ptr->system_mem -= heap->size;
        arena_mem -= heap->size;
        delete_heap(heap);
        heap = prev_heap;
        if(!prev_inuse(p)) { /* consolidate backward */
          p = prev_chunk(p);
          unlink(p, bck, fwd);
        }
        assert(((unsigned long)((char*)p + new_size) & (pagesz-1)) == 0);
        assert( ((char*)p + new_size) == ((char*)heap + heap->size) );
        top(ar_ptr) = top_chunk = p;
        set_head(top_chunk, new_size | PREV_INUSE);
        /*check_chunk(ar_ptr, top_chunk);*/
      }
      top_size = chunksize(top_chunk);
      extra = (top_size - pad - MINSIZE - 1) & ~(pagesz - 1);
      if(extra < (long)pagesz)
        return 0;
      /* Try to shrink. */
      if(shrink_heap(heap, extra) != 0)
        return 0;
      ar_ptr->system_mem -= extra;
      arena_mem -= extra;
    
      /* Success. Adjust top accordingly. */
      set_head(top_chunk, (top_size - extra) | PREV_INUSE);
      /*check_chunk(ar_ptr, top_chunk);*/
      return 1;
    }
    
    /* Create a new arena with initial size "size".  */
    
    static mstate
    _int_new_arena(size_t size)
    {
      mstate a;
      heap_info *h;
      char *ptr;
      unsigned long misalign;
    
      h = new_heap(size + (sizeof(*h) + sizeof(*a) + MALLOC_ALIGNMENT),
    	       mp_.top_pad);
      if(!h) {
        /* Maybe size is too large to fit in a single heap.  So, just try
           to create a minimally-sized arena and let _int_malloc() attempt
           to deal with the large request via mmap_chunk().  */
        h = new_heap(sizeof(*h) + sizeof(*a) + MALLOC_ALIGNMENT, mp_.top_pad);
        if(!h)
          return 0;
      }
      a = h->ar_ptr = (mstate)(h+1);
      malloc_init_state(a);
      /*a->next = NULL;*/
      a->system_mem = a->max_system_mem = h->size;
      arena_mem += h->size;
    #ifdef NO_THREADS
      if((unsigned long)(mp_.mmapped_mem + arena_mem + main_arena.system_mem) >
         mp_.max_total_mem)
        mp_.max_total_mem = mp_.mmapped_mem + arena_mem + main_arena.system_mem;
    #endif
    
      /* Set up the top chunk, with proper alignment. */
      ptr = (char *)(a + 1);
      misalign = (unsigned long)chunk2mem(ptr) & MALLOC_ALIGN_MASK;
      if (misalign > 0)
        ptr += MALLOC_ALIGNMENT - misalign;
      top(a) = (mchunkptr)ptr;
      set_head(top(a), (((char*)h + h->size) - ptr) | PREV_INUSE);
    
      tsd_setspecific(arena_key, (Void_t *)a);
      mutex_init(&a->mutex);
      (void)mutex_lock(&a->mutex);
    
    #ifdef PER_THREAD
      (void)mutex_lock(&list_lock);
    #endif
    
      /* Add the new arena to the global list.  */
      a->next = main_arena.next;
      atomic_write_barrier ();
      main_arena.next = a;
    
    #ifdef PER_THREAD
      ++narenas;
    
      (void)mutex_unlock(&list_lock);
    #endif
    
      THREAD_STAT(++(a->stat_lock_loop));
    
      return a;
    }
    
    
    #ifdef PER_THREAD
    static mstate
    get_free_list (void)
    {
      mstate result = free_list;
      if (result != NULL)
        {
          (void)mutex_lock(&list_lock);
          result = free_list;
          if (result != NULL)
    	free_list = result->next_free;
          (void)mutex_unlock(&list_lock);
    
          if (result != NULL)
    	{
    	  (void)mutex_lock(&result->mutex);
    	  tsd_setspecific(arena_key, (Void_t *)result);
    	  THREAD_STAT(++(result->stat_lock_loop));
    	}
        }
    
      return result;
    }
    
    
    static mstate
    reused_arena (void)
    {
      if (narenas <= mp_.arena_test)
        return NULL;
    
      static int narenas_limit;
      if (narenas_limit == 0)
        {
          if (mp_.arena_max != 0)
    	narenas_limit = mp_.arena_max;
          else
    	{
    	  int n  = __get_nprocs ();
    
    	  if (n >= 1)
    	    narenas_limit = NARENAS_FROM_NCORES (n);
    	  else
    	    /* We have no information about the system.  Assume two
    	       cores.  */
    	    narenas_limit = NARENAS_FROM_NCORES (2);
    	}
        }
    
      if (narenas < narenas_limit)
        return NULL;
    
      mstate result;
      static mstate next_to_use;
      if (next_to_use == NULL)
        next_to_use = &main_arena;
    
      result = next_to_use;
      do
        {
          if (!mutex_trylock(&result->mutex))
    	goto out;
    
          result = result->next;
        }
      while (result != next_to_use);
    
      /* No arena available.  Wait for the next in line.  */
      (void)mutex_lock(&result->mutex);
    
     out:
      tsd_setspecific(arena_key, (Void_t *)result);
      THREAD_STAT(++(result->stat_lock_loop));
      next_to_use = result->next;
    
      return result;
    }
    #endif
    
    static mstate
    internal_function
    #if __STD_C
    arena_get2(mstate a_tsd, size_t size)
    #else
    arena_get2(a_tsd, size) mstate a_tsd; size_t size;
    #endif
    {
      mstate a;
    
    #ifdef PER_THREAD
      if ((a = get_free_list ()) == NULL
          && (a = reused_arena ()) == NULL)
        /* Nothing immediately available, so generate a new arena.  */
        a = _int_new_arena(size);
    #else
      if(!a_tsd)
        a = a_tsd = &main_arena;
      else {
        a = a_tsd->next;
        if(!a) {
          /* This can only happen while initializing the new arena. */
          (void)mutex_lock(&main_arena.mutex);
          THREAD_STAT(++(main_arena.stat_lock_wait));
          return &main_arena;
        }
      }
    
      /* Check the global, circularly linked list for available arenas. */
      bool retried = false;
     repeat:
      do {
        if(!mutex_trylock(&a->mutex)) {
          if (retried)
    	(void)mutex_unlock(&list_lock);
          THREAD_STAT(++(a->stat_lock_loop));
          tsd_setspecific(arena_key, (Void_t *)a);
          return a;
        }
        a = a->next;
      } while(a != a_tsd);
    
      /* If not even the list_lock can be obtained, try again.  This can
         happen during `atfork', or for example on systems where thread
         creation makes it temporarily impossible to obtain _any_
         locks. */
      if(!retried && mutex_trylock(&list_lock)) {
        /* We will block to not run in a busy loop.  */
        (void)mutex_lock(&list_lock);
    
        /* Since we blocked there might be an arena available now.  */
        retried = true;
        a = a_tsd;
        goto repeat;
      }
    
      /* Nothing immediately available, so generate a new arena.  */
      a = _int_new_arena(size);
      (void)mutex_unlock(&list_lock);
    #endif
    
      return a;
    }
    
    #ifdef PER_THREAD
    static void __attribute__ ((section ("__libc_thread_freeres_fn")))
    arena_thread_freeres (void)
    {
      Void_t *vptr = NULL;
      mstate a = tsd_getspecific(arena_key, vptr);
      tsd_setspecific(arena_key, NULL);
    
      if (a != NULL)
        {
          (void)mutex_lock(&list_lock);
          a->next_free = free_list;
          free_list = a;
          (void)mutex_unlock(&list_lock);
        }
    }
    text_set_element (__libc_thread_subfreeres, arena_thread_freeres);
    #endif
    
    #endif /* USE_ARENAS */
    
    /*
     * Local variables:
     * c-basic-offset: 2
     * End:
     */
    


  • 相关阅读:
    v-if与v-show的区别
    vue 初始化项目
    element-ui的el-table中添加递增序号
    根据下拉框中选择的列在下面表格中显示对应的列
    element-ui中el-input需要改变placeholder的字体颜色
    根据不同路由,使对应的菜单高亮显示
    中间文字,两边横线的css3伪元素的使用
    关于正则表达式进行自定义校验
    对输入的表单内容自定义校验
    vue实现登录之后长时间未操作,退出登录
  • 原文地址:https://www.cnblogs.com/aquester/p/9891570.html
Copyright © 2011-2022 走看看