zoukankan      html  css  js  c++  java
  • AFM论文精读

    深度学习在推荐系统的应用(二)中AFM的简单回顾

    AFM模型(Attentional Factorization Machine)

    [ŷ_{AFM}(x)=ω_0+∑_{i=1}^{n}ω_{i}x_{i}+p^T∑^{n}_{i=1}∑^{n}_{j=i+1}a_{ij}(v_i⊙v_j)x_ix_j ]

    算法推导

    [ ext{(非零)特征集:}chi ]

    [ ext{(非零)特征的embeding输出:}varepsilon = left { v_ix_i ight }_{iin chi } ]

    FM模型数学公式:

    [widehat{y}_{FM}(X)=W_0+sum_{i=1}^n w_ix_i+sum_{i=1}^n sum_{j=i+1}^n widehat{w}_{ij}x_ix_j ext{(1)} ]

    pair-wise interaction layer(It expands m vectors to m(m − 1)/2 interacted vectors):

    [f_{PI}(varepsilon )=left { v_i odot v_jx_ix_j ight }_{i,j in R_x } ext{(2)} ]

    [ ext{这里}R_x=left { (i,j) ight }_{i in chi ,j in chi,j>i } ]

    the attention network is defined as :

    [acute{a_{ij}}=h^TReLU(W(v_i odot v_j)x_ix_j+b),a_{ij}= frac{exp(acute{a_{ij}})}{displaystyle sum_{(i,j) in R_x}exp(acute{a_{ij}})}(5) ]

    [ ext{这里}w in R^{t*k},b in R^t,h in R^t, ext{t代表注意力网络隐藏层大小,k是注意力网络输出向量维度大小} ]

    综上得AFM模型公式:

    [ŷ_{AFM}(x)=ω_0+∑_{i=1}^{n}ω_{i}x_{i}+p^T∑^{n}_{i=1}∑^{n}_{j=i+1}a_{ij}(v_i⊙v_j)x_ix_j ]

    模型用到得参数集合:

    [Theta =left { w_0, left { w_i ight }_{i=1}^n,left { v_i ight }_{i=1}^n ,P,W,b,h ight } ]

    论文要点

    • We point out that in these methods(e.g WDL,DCN), feature interactions are implicitly captured by a deep neural network, rather than FM that explicitly models each interaction as the inner product of two features. As such, these deep methods are not interpretable, as the contribution of each feature interaction is unknown.By directly extending FM with the attention mechanism that learns the importance of each feature interaction, our AMF is more interpretable and empirically demonstrates superior performance over Wide&Deep and DeepCross.

    • RQ1 How do the key hyper-parameters of AFM (i.e., dropout on feature interactions and regularization on the attention network) impact its performance?
      分别在开源数据机调参Dropout率和L2正则系数

    • RQ2 Can the attention network effectively learn the importance of feature interactions?
      对比只训练embeding和只训练attention network

    • RQ3 How does AFM perform as compared to the state-of-theart methods for sparse data prediction?
      对比开源数据集上的参数个数与损失;参数更少,损失更低

  • 相关阅读:
    B+树的Copy-on-Write设计
    so库链接和运行时选择哪个路径下的库?
    Xapian索引-文档检索过程分析之匹配百分比
    Xapian索引-文档检索过程分析
    Xapian的内存索引-添加文档
    Xapian的内存索引
    Xapian使用入门
    一个std::sort 自定义比较排序函数 crash的分析过程
    编译GCC4.8.2
    使用C++11的一点总结
  • 原文地址:https://www.cnblogs.com/arachis/p/AFM_detail.html
Copyright © 2011-2022 走看看