题意:
求无向图最小割是否唯一
分析:
1、我们先对原图求一次最大流
2、对残留网络,我们从S开始,找到所有所有S能到达的点;再从T开始,找出所有能到达T的点。
3、判断原网络中是否还有没有访问到的点,如果没有,则唯一,否者,不唯一!
// File Name: ACM/ZOJ/2587.cpp // Author: Zlbing // Created Time: 2013年08月16日 星期五 13时38分56秒 #include<iostream> #include<string> #include<algorithm> #include<cstdlib> #include<cstdio> #include<set> #include<map> #include<vector> #include<cstring> #include<stack> #include<cmath> #include<queue> using namespace std; #define CL(x,v); memset(x,v,sizeof(x)); #define INF 0x3f3f3f3f #define LL long long #define REP(i,r,n) for(int i=r;i<=n;i++) #define RREP(i,n,r) for(int i=n;i>=r;i--) const int MAXN=1000; struct Edge{ int from,to,cap,flow; }; bool cmp(const Edge& a,const Edge& b){ return a.from < b.from || (a.from == b.from && a.to < b.to); } struct Dinic{ int n,m,s,t; vector<Edge> edges; vector<int> G[MAXN]; bool vis[MAXN]; int d[MAXN]; int cur[MAXN]; void init(int n){ this->n=n; for(int i=0;i<=n;i++)G[i].clear(); edges.clear(); } void AddEdge(int from,int to,int cap){ edges.push_back((Edge){from,to,cap,0}); edges.push_back((Edge){to,from,cap,0});//当是无向图时,反向边容量也是cap,有向边时,反向边容量是0 m=edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } bool BFS(){ CL(vis,0); queue<int> Q; Q.push(s); d[s]=0; vis[s]=1; while(!Q.empty()){ int x=Q.front(); Q.pop(); for(int i=0;i<G[x].size();i++){ Edge& e=edges[G[x][i]]; if(!vis[e.to]&&e.cap>e.flow){ vis[e.to]=1; d[e.to]=d[x]+1; Q.push(e.to); } } } return vis[t]; } int DFS(int x,int a){ if(x==t||a==0)return a; int flow=0,f; for(int& i=cur[x];i<G[x].size();i++){ Edge& e=edges[G[x][i]]; if(d[x]+1==d[e.to]&&(f=DFS(e.to,min(a,e.cap-e.flow)))>0){ e.flow+=f; edges[G[x][i]^1].flow-=f; flow+=f; a-=f; if(a==0)break; } } return flow; } //当所求流量大于need时就退出,降低时间 int Maxflow(int s,int t,int need){ this->s=s;this->t=t; int flow=0; while(BFS()){ CL(cur,0); flow+=DFS(s,INF); if(flow>need)return flow; } return flow; } //最小割割边 vector<int> Mincut(){ BFS(); vector<int> ans; for(int i=0;i<edges.size();i++){ Edge& e=edges[i]; if(vis[e.from]&&!vis[e.to]&&e.cap>0)ans.push_back(i); } return ans; } void Reduce(){ for(int i = 0; i < edges.size(); i++) edges[i].cap -= edges[i].flow; } void ClearFlow(){ for(int i = 0; i < edges.size(); i++) edges[i].flow = 0; } void dfs1(int u) { vis_dfs[u]=1; a++; for(int i=0;i<(int)G[u].size();i++) { Edge e=edges[G[u][i]]; if(e.cap>e.flow&&!vis_dfs[e.to]) dfs1(e.to); } } void dfs2(int u) { vis_dfs[u]=1; b++; for(int i=0;i<(int)G[u].size();i++) { Edge e=edges[G[u][i]^1]; if(e.cap>e.flow&&!vis_dfs[e.from]) dfs2(e.from); } } bool solve() { CL(vis_dfs,0); a=0; b=0; dfs1(s); dfs2(t); if(a+b==n)return true; else return false; } int a,b; int vis_dfs[MAXN]; }; Dinic solver; int main() { int n,m,A,B; while(~scanf("%d%d%d%d",&n,&m,&A,&B)) { if(n==0)break; solver.init(n); int a,b,c; REP(i,1,m) { scanf("%d%d%d",&a,&b,&c); solver.AddEdge(a,b,c); } solver.Maxflow(A,B,INF); bool ans=solver.solve(); if(ans)puts("UNIQUE"); else puts("AMBIGUOUS"); } return 0; }