zoukankan      html  css  js  c++  java
  • k-mean 拐点

    n = 100
    g = 6
    set.seed(g)
    d <- data.frame(x = unlist(lapply(1:g, function(i) rnorm(n/g, runif(1)*i^2))),
                    y = unlist(lapply(1:g, function(i) rnorm(n/g, runif(1)*i^2))))
    plot(d)
    ###################
    d = read.table('clipboard',header = T)
    plot(d)

    mydata <- d
    wss <- (nrow(mydata)-1)*sum(apply(mydata,2,var))
    for (i in 2:15) wss[i] <- sum(kmeans(mydata,
                                         centers=i)$withinss)
    plot(1:15, wss, type="b", xlab="Number of Clusters",
         ylab="Within groups sum of squares")


    library(fpc)
    pamk.best <- pamk(d)
    ##############################
    lastcluster = pam(d, 1) # pam(d, pamk.best$nc)
    plot(d,type='l')
    vl = c(lastcluster$medoids[,1])
    vl
    abline(v=vl,lty=2,col='red')

    #library(cluster)
    #plot(pam(d, 3))
    ###################################
    #cat("number of clusters estimated by
    #    optimum average silhouette ", pamk.best$nc, " ")
    #library(cluster)
    #plot(pam(d, pamk.best$nc))




  • 相关阅读:
    一步一步来
    性能管理分析
    css架构
    bootstrap栅格系统的div高度怎样定?
    有效地重构代码
    模块化开发
    性能优化和模块化
    表单只能输入数字
    SpringMVC拦截器
    整合SSM
  • 原文地址:https://www.cnblogs.com/arcserver/p/9186004.html
Copyright © 2011-2022 走看看