zoukankan      html  css  js  c++  java
  • [LeetCode] 62. Unique Paths

    Description

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

    The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

    How many possible unique paths are there?

    robot_maze.png

    Above is a 7 x 3 grid. How many possible unique paths are there?

    Note: m and n will be at most 100.

    Example 1:

    Input: m = 3, n = 2
    Output: 3
    Explanation:
    From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
    1. Right -> Right -> Down
    2. Right -> Down -> Right
    3. Down -> Right -> Right
    

    Example 2:

    Input: m = 7, n = 3
    Output: 28
    

    Analyse

    有一个(m imes n)的网格,机器人处于左上方(0, 0)位置处,机器人只能向右或者向下走,计算一个机器人从(0, 0)走到(m, n)的总路线数

    动态规划

    dp[i][j] 代表从(0, 0)走到(i, j)的总路线数

    机器人只能向右或者向下走,所以当机器人在(i, j)的时候,有两种情况
    从(i-1, j)向下走了一步
    从(i, j-1)向右走了一步

    dp[i][j] = dp[i, j-1] + dp[i-1, j]

    int uniquePaths(int m, int n) {
        if (m < 0 || n < 0) return 0;
        int dp[100][100];
    
        for (int i = 0; i < m ; i++) {
            dp[i][0] = 1;
        }
    
        for (int j = 0; j < n; j++) {
            dp[0][j] = 1;
        }
    
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = dp[i][j-1] + dp[i-1][j];  
            }
        }
    
        return dp[m-1][n-1];
    }
    

    组合数学

    从(0, 0)走到(m ,n),需向右走n-1步,向下走m-1步,共 m+n-2步,路径数位(C_{m+n-2}^{m-1})(C_{m+n-2}^{n-1})

    [C_{m+n-2}^{n-1} = frac{(m+n-2)!}{(m-1)!(n-1)!} ]

    [C_{m+n-2}^{m-1} = frac{(m+n-2)!}{(n-1)!(m-1)!} ]

    (C_m^n)的计算方法

    [C_m^n = frac{m!}{n!(m-n)!} ]

    [C_4^2 = frac{4 imes 3}{2 imes 1} = frac{4}{2} imes frac{3}{1} ]

    用编程实现时可以用n控制循环次数,循环n次,依次乘上 (frac{m - i}{n - i})i为循环变量

    下面这段代码看似正确,实际上无法通过,原因是做除法的时候可能无法整除,导致计算错误

    int combination(int m, int n) {
        unsigned long long ans = 1;
    
        for(int i = 0; i < n; i++) {
            ans *= (m - i);
            ans /= (n - i); // 此处有错误
        }
    
        return ans;
    }
    int uniquePaths(int m, int n) {
        int a = m + n -2;
        int b = min(n-1, m-1); // 利用组合的性质减少计算次数
        return combination(a, b);
    }
    

    通过更换除数的顺序解决无法整除的问题, 最终代码如下

     int combination(int m, int n) {
        unsigned long long ans = 1;
    
        for(int i = 0; i < n; i++) {
            ans *= (m - i);
            ans /= (i + 1); // 从1开始除,可以保证能够整除
        }
    
        return ans;
    }
    int uniquePaths(int m, int n) {
        int a = m + n -2;
        int b = min(n-1, m-1);
        return combination(a, b);
    }
    
  • 相关阅读:
    Redis主从同步分析(转)
    Jedis使用总结【pipeline】【分布式的id生成器】【分布式锁【watch】【multi】】【redis分布式】(转)
    PHP之PDO_MYSQL扩展安装步骤(转)
    MongoDB 那些坑(转)
    CF 222 (DIV 1)
    TC SRM601
    TC SRM600 DIV2
    Github入门教程
    2013长春区域赛总结
    退役了~~~~~~~~~~~~
  • 原文地址:https://www.cnblogs.com/arcsinw/p/12182663.html
Copyright © 2011-2022 走看看