zoukankan      html  css  js  c++  java
  • Andrew Ng机器学习week2(Linear Regression)编程习题

    * plotData.m

    function plotData(x, y)
    %PLOTDATA Plots the data points x and y into a new figure 
    %   PLOTDATA(x,y) plots the data points and gives the figure axes labels of
    %   population and profit.
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Plot the training data into a figure using the 
    %               "figure" and "plot" commands. Set the axes labels using
    %               the "xlabel" and "ylabel" commands. Assume the 
    %               population and revenue data have been passed in
    %               as the x and y arguments of this function.
    %
    % Hint: You can use the 'rx' option with plot to have the markers
    %       appear as red crosses. Furthermore, you can make the
    %       markers larger by using plot(..., 'rx', 'MarkerSize', 10);
    
    figure; % open a new figure window
    plot(x, y, '+', 'MarkerSize', 10);
    xlabel('Population of City in 10,000s');
    ylabel('Profit in $10,000s');
    
    
    % ============================================================
    
    end

    * computeCost.m

    function J = computeCost(X, y, theta)
    %COMPUTECOST Compute cost for linear regression
    %   J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
    %   parameter for linear regression to fit the data points in X and y
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0;
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost of a particular choice of theta
    %               You should set J to the cost.
    J = sum((X * theta - y) .^ 2) / (2 * m);
    
    
    
    
    % =========================================================================
    
    end

    * gradientDescent.m

    function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
    %GRADIENTDESCENT Performs gradient descent to learn theta
    %   theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by 
    %   taking num_iters gradient steps with learning rate alpha
    
    % Initialize some useful values
    m = length(y); % number of training examples
    J_history = zeros(num_iters, 1);
    
    for iter = 1:num_iters
    
        % ====================== YOUR CODE HERE ======================
        % Instructions: Perform a single gradient step on the parameter vector
        %               theta. 
        %
        % Hint: While debugging, it can be useful to print out the values
        %       of the cost function (computeCost) and gradient here.
        %
        theta = theta - alpha * (X' * (X * theta - y)) / m
    
    
    
        % ============================================================
    
        % Save the cost J in every iteration    
        J_history(iter) = computeCost(X, y, theta);
    
    end
    
    end

    *  featureNormalize.m

    function [X_norm, mu, sigma] = featureNormalize(X)
    %FEATURENORMALIZE Normalizes the features in X 
    %   FEATURENORMALIZE(X) returns a normalized version of X where
    %   the mean value of each feature is 0 and the standard deviation
    %   is 1. This is often a good preprocessing step to do when
    %   working with learning algorithms.
    
    % You need to set these values correctly
    X_norm = X;
    mu = zeros(1, size(X, 2));
    sigma = zeros(1, size(X, 2));
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: First, for each feature dimension, compute the mean
    %               of the feature and subtract it from the dataset,
    %               storing the mean value in mu. Next, compute the 
    %               standard deviation of each feature and divide
    %               each feature by it's standard deviation, storing
    %               the standard deviation in sigma. 
    %
    %               Note that X is a matrix where each column is a 
    %               feature and each row is an example. You need 
    %               to perform the normalization separately for 
    %               each feature. 
    %
    % Hint: You might find the 'mean' and 'std' functions useful.
    %       
    
    len = length(X);
    mu = mean(X);
    sigma = std(X);
    X_norm = (X - ones(len, 1) * mu) ./ (ones(len, 1) * sigma);
    
    
    % ============================================================
    
    end

    * normalEqn.m

    function [theta] = normalEqn(X, y)
    %NORMALEQN Computes the closed-form solution to linear regression 
    %   NORMALEQN(X,y) computes the closed-form solution to linear 
    %   regression using the normal equations.
    
    theta = zeros(size(X, 2), 1);
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Complete the code to compute the closed form solution
    %               to linear regression and put the result in theta.
    %
    
    % ---------------------- Sample Solution ----------------------
    
    theta = pinv(X' * X) * X' * y
    
    
    % -------------------------------------------------------------
    
    
    % ============================================================
    
    end
  • 相关阅读:
    总结C#获取当前路径的7种方法
    Cognex925B的使用方法
    值类型不允许赋值为Null
    浅谈Task的用法
    C#中的变量祥解
    C#中属性的解析
    浅谈简单工厂模式
    浅谈Invoke 和 BegionInvoke的用法
    c#小灶——9.算术运算符
    c#小灶——8.自动类型转换和强制类型转换
  • 原文地址:https://www.cnblogs.com/arcticant/p/3403010.html
Copyright © 2011-2022 走看看