zoukankan      html  css  js  c++  java
  • Andrew Ng机器学习week4(Neural Networks: Representation)编程习题

    * lrCostFunction.m

    function [J, grad] = lrCostFunction(theta, X, y, lambda)
    %LRCOSTFUNCTION Compute cost and gradient for logistic regression with 
    %regularization
    %   J = LRCOSTFUNCTION(theta, X, y, lambda) computes the cost of using
    %   theta as the parameter for regularized logistic regression and the
    %   gradient of the cost w.r.t. to the parameters. 
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0;
    grad = zeros(size(theta));
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost of a particular choice of theta.
    %               You should set J to the cost.
    %               Compute the partial derivatives and set grad to the partial
    %               derivatives of the cost w.r.t. each parameter in theta
    %
    % Hint: The computation of the cost function and gradients can be
    %       efficiently vectorized. For example, consider the computation
    %
    %           sigmoid(X * theta)
    %
    %       Each row of the resulting matrix will contain the value of the
    %       prediction for that example. You can make use of this to vectorize
    %       the cost function and gradient computations. 
    %
    % Hint: When computing the gradient of the regularized cost function, 
    %       there're many possible vectorized solutions, but one solution
    %       looks like:
    %           grad = (unregularized gradient for logistic regression)
    %           temp = theta; 
    %           temp(1) = 0;   % because we don't add anything for j = 0  
    %           grad = grad + YOUR_CODE_HERE (using the temp variable)
    %
    
    h = sigmoid(X * theta);
    J = (-y' * log(h) - (1 - y)' * log(1 - h)) / m;
    grad = (X' * (h -y)) ./ m;
    
    J = J + sum(theta(2:end) .^ 2)*lambda/(2*m);
    grad(2:end) = grad(2:end) + theta(2:end) .* (lambda / m);
    
    
    % =============================================================
    
    grad = grad(:);
    
    end

    * oneVsAll.m

    function [all_theta] = oneVsAll(X, y, num_labels, lambda)
    %ONEVSALL trains multiple logistic regression classifiers and returns all
    %the classifiers in a matrix all_theta, where the i-th row of all_theta 
    %corresponds to the classifier for label i
    %   [all_theta] = ONEVSALL(X, y, num_labels, lambda) trains num_labels
    %   logisitc regression classifiers and returns each of these classifiers
    %   in a matrix all_theta, where the i-th row of all_theta corresponds 
    %   to the classifier for label i
    
    % Some useful variables
    m = size(X, 1);
    n = size(X, 2);
    
    % You need to return the following variables correctly 
    all_theta = zeros(num_labels, n + 1);
    
    % Add ones to the X data matrix
    X = [ones(m, 1) X];
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: You should complete the following code to train num_labels
    %               logistic regression classifiers with regularization
    %               parameter lambda. 
    %
    % Hint: theta(:) will return a column vector.
    %
    % Hint: You can use y == c to obtain a vector of 1's and 0's that tell use 
    %       whether the ground truth is true/false for this class.
    %
    % Note: For this assignment, we recommend using fmincg to optimize the cost
    %       function. It is okay to use a for-loop (for c = 1:num_labels) to
    %       loop over the different classes.
    %
    %       fmincg works similarly to fminunc, but is more efficient when we
    %       are dealing with large number of parameters.
    %
    % Example Code for fmincg:
    %
    %     % Set Initial theta
    %     initial_theta = zeros(n + 1, 1);
    %     
    %     % Set options for fminunc
    %     options = optimset('GradObj', 'on', 'MaxIter', 50);
    % 
    %     % Run fmincg to obtain the optimal theta
    %     % This function will return theta and the cost 
    %     [theta] = ...
    %         fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...
    %                 initial_theta, options);
    %
    
    
    for k=1:num_labels
        initial_theta = zeros(n+1, 1);
        options = optimset('GradObj', 'on', 'MaxIter', 50);
        [theta] = ...
            fmincg(@(t)(lrCostFunction(t, X, (y == k), lambda)), ...
                initial_theta, options);
        all_theta(k, :) = theta(:);
    
    % =========================================================================
    
    
    end

    * predictOneVsAll.m

    function p = predictOneVsAll(all_theta, X)
    %PREDICT Predict the label for a trained one-vs-all classifier. The labels 
    %are in the range 1..K, where K = size(all_theta, 1). 
    %  p = PREDICTONEVSALL(all_theta, X) will return a vector of predictions
    %  for each example in the matrix X. Note that X contains the examples in
    %  rows. all_theta is a matrix where the i-th row is a trained logistic
    %  regression theta vector for the i-th class. You should set p to a vector
    %  of values from 1..K (e.g., p = [1; 3; 1; 2] predicts classes 1, 3, 1, 2
    %  for 4 examples) 
    
    m = size(X, 1);
    num_labels = size(all_theta, 1);
    
    % You need to return the following variables correctly 
    p = zeros(size(X, 1), 1);
    
    % Add ones to the X data matrix
    X = [ones(m, 1) X];
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Complete the following code to make predictions using
    %               your learned logistic regression parameters (one-vs-all).
    %               You should set p to a vector of predictions (from 1 to
    %               num_labels).
    %
    % Hint: This code can be done all vectorized using the max function.
    %       In particular, the max function can also return the index of the 
    %       max element, for more information see 'help max'. If your examples 
    %       are in rows, then, you can use max(A, [], 2) to obtain the max 
    %       for each row.
    %       
    
    
    
    [maxVal, index] = max(X * all_theta', [], 2);
    p = index;
    
    
    
    % =========================================================================
    
    
    end
  • 相关阅读:
    信息学奥赛一本通(C++)在线评测系统——基础(一)C++语言——1105:数组逆序重存放
    信息学奥赛一本通(C++)在线评测系统——基础(一)C++语言——1106:年龄与疾病
    信息学奥赛一本通(C++)在线评测系统——基础(一)C++语言——1105:数组逆序重存放
    信息学奥赛一本通(C++)在线评测系统——基础(一)C++语言——1104:计算书费
    信息学奥赛一本通(C++)在线评测系统——基础(一)C++语言——1104:计算书费
    信息学奥赛一本通(C++)在线评测系统——基础(一)C++语言——1104:计算书费
    configparser
    python中split()、os.path.split()函数用法
    DOS命令
    adb安装及使用
  • 原文地址:https://www.cnblogs.com/arcticant/p/3440208.html
Copyright © 2011-2022 走看看