Given a complete binary tree, count the number of nodes.
Definition of a complete binary tree from Wikipedia:
In a complete binary tree every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible. It can have between 1 and 2h nodes inclusive at the last level h.
1. 递归
//return -1 if it is not. int isCompleteTree(TreeNode* root) { if (!root) return 0; int cnt = 1; TreeNode *left = root, *right = root; for(; left && right; left=left->left, right=right->right) { cnt *= 2; } if (left!=NULL || right!=NULL) { return -1; } return cnt-1; } int countNodes(TreeNode* root) { int cnt = isCompleteTree(root); if (cnt != -1) return cnt; int leftCnt = countNodes(root->left); int rightCnt = countNodes(root->right); return leftCnt + rightCnt + 1; }
2. 非递归
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: int countNodes(TreeNode* root) { int ans = 0, lh = 0, rh = 0; TreeNode *p = root; while(p) { //先求p的左右子树的最大深度。若相等,则p加左子树节点个数为1<<lh,再求右子树;若不等,则p加右子树节点个数为1<<rh,再求左子树。 if(!lh) //若lh不为0,说明lh由之前的lh--得到,是已知的。 { for(TreeNode *t = p->left; t; t = t->left) lh++; } for(TreeNode *t = p->right; t; t = t->left) rh++; if(lh == rh) { ans += 1 << lh; p = p->right; } else { ans += 1 << rh; p = p->left; } lh--; rh = 0; } return ans; } };