Medium!
题目描述:
根据一棵树的中序遍历与后序遍历构造二叉树。
注意:
你可以假设树中没有重复的元素。
例如,给出
中序遍历 inorder = [9,3,15,20,7] 后序遍历 postorder = [9,15,7,20,3]
返回如下的二叉树:
3 / 9 20 / 15 7
解题思路:
这道题要求从中序和后序遍历的结果来重建原二叉树,我们知道中序的遍历顺序是左-根-右,后序的顺序是左-右-根,对于这种树的重建一般都是采用递归来做,可参见http://www.cnblogs.com/grandyang/p/4295245.html,针对这道题,由于后序的顺序的最后一个肯定是根,所以原二叉树的根节点可以知道,题目中给了一个很关键的条件就是树中没有相同元素,有了这个条件我们就可以在中序遍历中也定位出根节点的位置,并以根节点的位置将中序遍历拆分为左右两个部分,分别对其递归调用原函数。
C++解法一:
1 /** 2 * Definition for binary tree 3 * struct TreeNode { 4 * int val; 5 * TreeNode *left; 6 * TreeNode *right; 7 * TreeNode(int x) : val(x), left(NULL), right(NULL) {} 8 * }; 9 */ 10 class Solution { 11 public: 12 TreeNode *buildTree(vector<int> &inorder, vector<int> &postorder) { 13 return buildTree(inorder, 0, inorder.size() - 1, postorder, 0, postorder.size() - 1); 14 } 15 TreeNode *buildTree(vector<int> &inorder, int iLeft, int iRight, vector<int> &postorder, int pLeft, int pRight) { 16 if (iLeft > iRight || pLeft > pRight) return NULL; 17 TreeNode *cur = new TreeNode(postorder[pRight]); 18 int i = 0; 19 for (i = iLeft; i < inorder.size(); ++i) { 20 if (inorder[i] == cur->val) break; 21 } 22 cur->left = buildTree(inorder, iLeft, i - 1, postorder, pLeft, pLeft + i - iLeft - 1); 23 cur->right = buildTree(inorder, i + 1, iRight, postorder, pLeft + i - iLeft, pRight - 1); 24 return cur; 25 } 26 };
上述代码中需要小心的地方就是递归是postorder的左右index很容易写错,比如 pLeft + i - iLeft - 1, 这个又长又不好记,首先我们要记住 i - iLeft 是计算inorder中根节点位置和左边起始点的距离,然后再加上postorder左边起始点然后再减1。我们可以这样分析,如果根节点就是左边起始点的话,那么拆分的话左边序列应该为空集,此时i - iLeft 为0, pLeft + 0 - 1 < pLeft, 那么再递归调用时就会返回NULL, 成立。如果根节点是左边起始点紧跟的一个,那么i - iLeft 为1, pLeft + 1 - 1 = pLeft,再递归调用时还会生成一个节点,就是pLeft位置上的节点,为原二叉树的一个叶节点。
我们下面来看一个例子, 某一二叉树的中序和后序遍历分别为:
Inorder: 11 4 5 13 8 9
Postorder: 11 4 13 9 8 5
11 4 5 13 8 9 => 5
11 4 13 9 8 5 /
11 4 13 8 9 => 5
11 4 13 9 8 /
4 8
11 13 9 => 5
11 13 9 /
4 8
/ /
11 13 9