完整版教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=94547
第32章 STM32H7的实数FFT的逆变换(支持单精度和双精度)
本章主要讲解实数FFT的逆变换实现。通过FFT变换将波形从时域转换到频域,通过IFFT逆变换实现从频域到时域变换。
通过本章为大家展示一个波形FFT变换,然后IFFT还原波形。
32.1 初学者重要提示
32.2 利用FFT库实现IFFT的思路
32.3 Matlab实现FFT正变换和逆变换
32.4 单精度函数arm_rfft_fast_f32实现FFT正变换和逆变换
32.5 双精度函数arm_rfft_fast_f64实现FFT正变换和逆变换
32.6 实验例程说明(MDK)
32.7 实验例程说明(IAR)
32.8 总结
32.1 初学者重要提示
- STM32H7支持硬件单精度浮点和硬件双精度浮点,计算FFT正变换和逆变换速度都会非常快。而STM32F4仅支持硬件单精度浮点。
32.2 利用FFT库实现IFFT的思路
如果希望直接调用FFT程序计算IFFT,可以用下面的方法:
对上式两边同时去共轭,得:
简单的说就是先对原始信号做FFT变换,然后对转换结果取共轭,再次带到FFT中计算,并将结果再次取共轭就可以实现IFFT。
32.3 Matlab实现FFT正变换和逆变换
根据上面小节的实现思路,我们在Matlab上面做一个验证,验证代码如下:
Fs = 1024; % 采样率 N = 1024; % 采样点数 n = 0:N-1; % 采样序列 t = 0:1/Fs:1-1/Fs; % 时间序列 f = n * Fs / N; %真实的频率 x = 1.5*sin(2*pi*20*t+pi/3) ; %原始信号 y = fft(x, N); %对原始信号做FFT变换 z = conj(y); %对转换结果取共轭 subplot(2,1,2); z = fft(z, N); %再次做FFT k = conj(z); %对转换结果去共轭 plot(f, real(k)); %绘制转换后的波形 title('IFFT转换后的波形'); subplot(2,1,1); plot(f, x); %绘制原始波形 title('原始波形');
Matab的运行结果如下:
从上面的转换结果看,两个波形信号基本是一致的。
32.4 单精度函数arm_rfft_fast_f32实现FFT正变换和逆变换
32.4.1 函数说明
函数原型:
void arm_rfft_fast_f32(
const arm_rfft_fast_instance_f32 * S,
float32_t * p,
float32_t * pOut,
uint8_t ifftFlag)
函数描述:
这个函数用于单精度浮点实数FFT。
函数参数:
- 第1个参数是封装好的浮点FFT例化,需要用户先调用函数arm_rfft_fast_init_f32初始化,然后供此函数arm_rfft_fast_f32调用。支持32, 64, 128, 256, 512, 1024, 2048, 4096点FFT。
比如做1024点FFT,代码如下:
arm_rfft_fast_instance_f32 S;
arm_rfft_fast_init_f32(&S, 1024);
arm_rfft_fast_f32(&S, testInput_f32, testOutput_f32, ifftFlag);
- 第2个参数是实数地址,比如我们要做1024点实数FFT,要保证有1024个缓冲。
- 第3个参数是FFT转换结果,转换结果不是实数了,而是复数,按照实部,虚拟,实部,虚部,依次排列。比如做1024点FFT,这里的输出也会有1024个数据,即512个复位。
- 第4个参数用于设置正变换和逆变换,ifftFlag=0表示正变换,ifftFlag=1表示逆变换。
32.4.2 使用举例
下面通过函数arm_rfft_fast_f32将正弦波做FFT变换,并再次通过函数arm_rfft_fast_f32做FFT逆变换来比较原始波形和转换后波形效果。
/* ********************************************************************************************************* * 函 数 名: arm_rfft_f32_app * 功能说明: 调用函数arm_rfft_fast_f32计算幅频和相频 * 形 参:无 * 返 回 值: 无 ********************************************************************************************************* */ static void arm_rfft_f32_app(void) { uint16_t i; arm_rfft_fast_instance_f32 S; /* 正变换 */ ifftFlag = 0; /* 初始化结构体S中的参数 */ arm_rfft_fast_init_f32(&S, TEST_LENGTH_SAMPLES); for(i=0; i<1024; i++) { /* 波形是由直流分量,50Hz正弦波组成,波形采样率1024,初始相位60° */ testInput_f32[i] = 1 + cos(2*3.1415926f*50*i/1024 + 3.1415926f/3); } /* 1024点实序列快速FFT */ arm_rfft_fast_f32(&S, testInput_f32, testOutput_f32, ifftFlag); /* 为了方便跟函数arm_cfft_f32计算的结果做对比,这里求解了1024组模值,实际函数arm_rfft_fast_f32 只求解出了512组 */ arm_cmplx_mag_f32(testOutput_f32, testOutputMag_f32, TEST_LENGTH_SAMPLES); printf("========================================= "); /* 求相频 */ PowerPhaseRadians_f32(testOutput_f32, Phase_f32, TEST_LENGTH_SAMPLES, 0.5f); /* 串口打印求解的幅频和相频 */ for(i=0; i<TEST_LENGTH_SAMPLES; i++) { printf("%f, %f ", testOutputMag_f32[i], Phase_f32[i]); } }
运行函数arm_rfft_f32_app可以通过串口打印原始波形和还原后波形效果:
从上面的对比结果中可以看出原始波形和还原后的波形是一致的。
32.5 双精度函数arm_rfft_fast_f64实现FFT正变换和逆变换
32.5.1 函数说明
函数原型:
void arm_rfft_fast_f64(
arm_rfft_fast_instance_f64 * S,
float64_t * p,
float64_t * pOut,
uint8_t ifftFlag)
函数描述:
这个函数用于双精度浮点实数FFT。
函数参数:
- 第1个参数是封装好的浮点FFT例化,需要用户先调用函数arm_rfft_fast_init_f64初始化,然后供此函数arm_rfft_fast_f64调用。支持32, 64, 128, 256, 512, 1024, 2048, 4096点FFT。
比如做1024点FFT,代码如下:
arm_rfft_fast_instance_f64 S;
arm_rfft_fast_init_f64(&S, 1024);
arm_rfft_fast_f64(&S, testInput_f64, testOutput_f64, ifftFlag);
- 第2个参数是实数地址,比如我们要做1024点实数FFT,要保证有1024个缓冲。
- 第3个参数是FFT转换结果,转换结果不是实数了,而是复数,按照实部,虚拟,实部,虚部,依次排列。比如做1024点FFT,这里的输出也会有1024个数据,即512个复位。
- 第4个参数用于设置正变换和逆变换,ifftFlag=0表示正变换,ifftFlag=1表示逆变换。
32.5.2 使用举例
下面通过函数arm_rfft_fast_f64将正弦波做FFT变换,并再次通过函数arm_rfft_fast_f64做FFT逆变换来比较原始波形和转换后波形效果:
/* ********************************************************************************************************* * 函 数 名: arm_rfft_f64_app * 功能说明: 调用函数arm_rfft_fast_f64计算FFT逆变换和正变换 * 形 参:无 * 返 回 值: 无 ********************************************************************************************************* */ static void arm_rfft_f64_app(void) { uint16_t i; arm_rfft_fast_instance_f64 S; /* 正变换 */ ifftFlag = 0; /* 初始化结构体S中的参数 */ arm_rfft_fast_init_f64(&S, TEST_LENGTH_SAMPLES); for(i=0; i<1024; i++) { /* 波形是由直流分量,50Hz正弦波组成,波形采样率1024,初始相位60° */ testInput_f64[i] = 1 + cos(2*3.1415926*50*i/1024 + 3.1415926/3); testOutputIn_f64[i] = testInput_f64[i]; } /* 1024点实序列快速FFT, testInput_f64是输入数据,testOutput_f64是输出 */ arm_rfft_fast_f64(&S, testInput_f64, testOutput_f64, ifftFlag); /* 逆变换 */ ifftFlag = 1; /* 1024点实序列快速FFT逆变换,testOutput_f64是输入数据,testInput_f64是输出数据 */ arm_rfft_fast_f64(&S, testOutput_f64, testInput_f64, ifftFlag); printf("========================================= "); /* 串口打印,testOutputIn_f32原始信号,testInput_f32逆变换后的信号 */ for(i=0; i<TEST_LENGTH_SAMPLES; i++) { printf("%.11f, %.11f ", testOutputIn_f64[i], testInput_f64[i]); } }
运行函数arm_rfft_f64_app可以通过串口打印原始波形和还原后波形效果:
从上面的对比结果中可以看出原始波形和还原后的波形是一致的。
32.6 实验例程说明(MDK)
配套例子:
V7-222_实数浮点FFT逆变换(支持单精度和双精度)
实验目的:
- 学习实数浮点FFT逆变换,支持单精度浮点和双精度浮点
实验内容:
- 启动一个自动重装软件定时器,每100ms翻转一次LED2。
- 按下按键K1,串口打印1024点实数单精度FFT逆变换。
- 按下按键K2,串口打印1024点实数双精度FFT逆变换。
使用AC6注意事项
特别注意附件章节C的问题
上电后串口打印的信息:
波特率 115200,数据位 8,奇偶校验位无,停止位 1。
RTT方式打印信息:
程序设计:
系统栈大小分配:
RAM空间用的DTCM:
硬件外设初始化
硬件外设的初始化是在 bsp.c 文件实现:
/* ********************************************************************************************************* * 函 数 名: bsp_Init * 功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次 * 形 参:无 * 返 回 值: 无 ********************************************************************************************************* */ void bsp_Init(void) { /* 配置MPU */ MPU_Config(); /* 使能L1 Cache */ CPU_CACHE_Enable(); /* STM32H7xx HAL 库初始化,此时系统用的还是H7自带的64MHz,HSI时钟: - 调用函数HAL_InitTick,初始化滴答时钟中断1ms。 - 设置NVIC优先级分组为4。 */ HAL_Init(); /* 配置系统时钟到400MHz - 切换使用HSE。 - 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。 */ SystemClock_Config(); /* Event Recorder: - 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。 - 默认不开启,如果要使能此选项,务必看V7开发板用户手册第8章 */ #if Enable_EventRecorder == 1 /* 初始化EventRecorder并开启 */ EventRecorderInitialize(EventRecordAll, 1U); EventRecorderStart(); #endif bsp_InitKey(); /* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */ bsp_InitTimer(); /* 初始化滴答定时器 */ bsp_InitUart(); /* 初始化串口 */ bsp_InitExtIO(); /* 初始化FMC总线74HC574扩展IO. 必须在 bsp_InitLed()前执行 */ bsp_InitLed(); /* 初始化LED */ }
MPU配置和Cache配置:
数据Cache和指令Cache都开启。配置了AXI SRAM区(本例子未用到AXI SRAM),FMC的扩展IO区。
/* ********************************************************************************************************* * 函 数 名: MPU_Config * 功能说明: 配置MPU * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ static void MPU_Config( void ) { MPU_Region_InitTypeDef MPU_InitStruct; /* 禁止 MPU */ HAL_MPU_Disable(); /* 配置AXI SRAM的MPU属性为Write back, Read allocate,Write allocate */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x24000000; MPU_InitStruct.Size = MPU_REGION_SIZE_512KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER0; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL1; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* 配置FMC扩展IO的MPU属性为Device或者Strongly Ordered */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x60000000; MPU_InitStruct.Size = ARM_MPU_REGION_SIZE_64KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER1; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /*使能 MPU */ HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT); } /* ********************************************************************************************************* * 函 数 名: CPU_CACHE_Enable * 功能说明: 使能L1 Cache * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ static void CPU_CACHE_Enable(void) { /* 使能 I-Cache */ SCB_EnableICache(); /* 使能 D-Cache */ SCB_EnableDCache(); }
主功能:
主程序实现如下操作:
- 启动一个自动重装软件定时器,每100ms翻转一次LED2。
- 按下按键K1,串口打印1024点实数单精度FFT逆变换。
- 按下按键K2,串口打印1024点实数双精度FFT逆变换。
/* ********************************************************************************************************* * 函 数 名: main * 功能说明: c程序入口 * 形 参: 无 * 返 回 值: 错误代码(无需处理) ********************************************************************************************************* */ int main(void) { uint8_t ucKeyCode; /* 按键代码 */ bsp_Init(); /* 硬件初始化 */ PrintfLogo(); /* 打印例程信息到串口1 */ PrintfHelp(); /* 打印操作提示信息 */ bsp_StartAutoTimer(0, 100); /* 启动1个100ms的自动重装的定时器 */ /* 进入主程序循环体 */ while (1) { bsp_Idle(); /* 这个函数在bsp.c文件。用户可以修改这个函数实现CPU休眠和喂狗 */ if (bsp_CheckTimer(0)) /* 判断定时器超时时间 */ { /* 每隔100ms 进来一次 */ bsp_LedToggle(4); /* 翻转LED2的状态 */ } ucKeyCode = bsp_GetKey(); /* 读取键值, 无键按下时返回 KEY_NONE = 0 */ if (ucKeyCode != KEY_NONE) { switch (ucKeyCode) { case KEY_DOWN_K1: /* K1键按下 */ arm_rfft_f32_app(); break; case KEY_DOWN_K2: /* K2键按下 */ arm_rfft_f64_app(); break; default: /* 其它的键值不处理 */ break; } } } }
32.7 实验例程说明(IAR)
配套例子:
V7-222_实数浮点FFT逆变换(支持单精度和双精度)
实验目的:
- 学习实数浮点FFT逆变换,支持单精度浮点和双精度浮点
实验内容:
- 启动一个自动重装软件定时器,每100ms翻转一次LED2。
- 按下按键K1,串口打印1024点实数单精度FFT逆变换。
- 按下按键K2,串口打印1024点实数双精度FFT逆变换。
上电后串口打印的信息:
波特率 115200,数据位 8,奇偶校验位无,停止位 1。
RTT方式打印信息:
程序设计:
系统栈大小分配:
RAM空间用的DTCM:
硬件外设初始化
硬件外设的初始化是在 bsp.c 文件实现:
/* ********************************************************************************************************* * 函 数 名: bsp_Init * 功能说明: 初始化所有的硬件设备。该函数配置CPU寄存器和外设的寄存器并初始化一些全局变量。只需要调用一次 * 形 参:无 * 返 回 值: 无 ********************************************************************************************************* */ void bsp_Init(void) { /* 配置MPU */ MPU_Config(); /* 使能L1 Cache */ CPU_CACHE_Enable(); /* STM32H7xx HAL 库初始化,此时系统用的还是H7自带的64MHz,HSI时钟: - 调用函数HAL_InitTick,初始化滴答时钟中断1ms。 - 设置NVIC优先级分组为4。 */ HAL_Init(); /* 配置系统时钟到400MHz - 切换使用HSE。 - 此函数会更新全局变量SystemCoreClock,并重新配置HAL_InitTick。 */ SystemClock_Config(); /* Event Recorder: - 可用于代码执行时间测量,MDK5.25及其以上版本才支持,IAR不支持。 - 默认不开启,如果要使能此选项,务必看V7开发板用户手册第8章 */ #if Enable_EventRecorder == 1 /* 初始化EventRecorder并开启 */ EventRecorderInitialize(EventRecordAll, 1U); EventRecorderStart(); #endif bsp_InitKey(); /* 按键初始化,要放在滴答定时器之前,因为按钮检测是通过滴答定时器扫描 */ bsp_InitTimer(); /* 初始化滴答定时器 */ bsp_InitUart(); /* 初始化串口 */ bsp_InitExtIO(); /* 初始化FMC总线74HC574扩展IO. 必须在 bsp_InitLed()前执行 */ bsp_InitLed(); /* 初始化LED */ }
MPU配置和Cache配置:
数据Cache和指令Cache都开启。配置了AXI SRAM区(本例子未用到AXI SRAM),FMC的扩展IO区。
/* ********************************************************************************************************* * 函 数 名: MPU_Config * 功能说明: 配置MPU * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ static void MPU_Config( void ) { MPU_Region_InitTypeDef MPU_InitStruct; /* 禁止 MPU */ HAL_MPU_Disable(); /* 配置AXI SRAM的MPU属性为Write back, Read allocate,Write allocate */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x24000000; MPU_InitStruct.Size = MPU_REGION_SIZE_512KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER0; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL1; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* 配置FMC扩展IO的MPU属性为Device或者Strongly Ordered */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.BaseAddress = 0x60000000; MPU_InitStruct.Size = ARM_MPU_REGION_SIZE_64KB; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER1; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.SubRegionDisable = 0x00; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /*使能 MPU */ HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT); } /* ********************************************************************************************************* * 函 数 名: CPU_CACHE_Enable * 功能说明: 使能L1 Cache * 形 参: 无 * 返 回 值: 无 ********************************************************************************************************* */ static void CPU_CACHE_Enable(void) { /* 使能 I-Cache */ SCB_EnableICache(); /* 使能 D-Cache */ SCB_EnableDCache(); }
主功能:
主程序实现如下操作:
- 启动一个自动重装软件定时器,每100ms翻转一次LED2。
- 按下按键K1,串口打印1024点实数单精度FFT逆变换。
- 按下按键K2,串口打印1024点实数双精度FFT逆变换。
/* ********************************************************************************************************* * 函 数 名: main * 功能说明: c程序入口 * 形 参: 无 * 返 回 值: 错误代码(无需处理) ********************************************************************************************************* */ int main(void) { uint8_t ucKeyCode; /* 按键代码 */ bsp_Init(); /* 硬件初始化 */ PrintfLogo(); /* 打印例程信息到串口1 */ PrintfHelp(); /* 打印操作提示信息 */ bsp_StartAutoTimer(0, 100); /* 启动1个100ms的自动重装的定时器 */ /* 进入主程序循环体 */ while (1) { bsp_Idle(); /* 这个函数在bsp.c文件。用户可以修改这个函数实现CPU休眠和喂狗 */ if (bsp_CheckTimer(0)) /* 判断定时器超时时间 */ { /* 每隔100ms 进来一次 */ bsp_LedToggle(4); /* 翻转LED2的状态 */ } ucKeyCode = bsp_GetKey(); /* 读取键值, 无键按下时返回 KEY_NONE = 0 */ if (ucKeyCode != KEY_NONE) { switch (ucKeyCode) { case KEY_DOWN_K1: /* K1键按下 */ arm_rfft_f32_app(); break; case KEY_DOWN_K2: /* K2键按下 */ arm_rfft_f64_app(); break; default: /* 其它的键值不处理 */ break; } } } }
32.8 总结
本章节主要验证了函数arm_rfft_fast_f32正变换和逆变换,有兴趣的可以验证Q31和Q15两种数据类型的正变换和逆变换。