zoukankan      html  css  js  c++  java
  • Linux下时钟框架实践---一款芯片的时钟树配置

    关键词:时钟、PLL、Mux、Divider、Gate、clk_summary等。

    时钟和电源是各种设备的基础设施,整个时钟框架可以抽象为几种基本的元器件:负责提供晶振

    Linux内核提供了良好的CCF(Common Clock Framework),框架的两端一个是provider,一个是consumer。

    provider指的是提供时钟模块,包括晶振、PLL、Mux、Divider、Gate等,consumer指的是使用这些时钟的模块。

    1. Linux时钟框架基础

    相关文档对时钟框架做了详细的介绍:《Linux common clock framework(1)_概述》、《Linux common clock framework(2)_clock provider》、《Linux common clock framework(3)_实现逻辑分析》以及《Common Clock Framework系统结构》。

    这里简单罗列一下相关知识。

    1.1 编写时钟provider驱动

    provider包含基本硬件元素:Oscillator/Crystal-提供时钟晶振、PLL-倍频、Mux-多路选择、Divider-分频器、Gate-控制开关,还有Fixed-Divider-固定分频器。

    这些硬件都可以抽象成一种类型的时钟,所有类型的时钟都可以通过struct clk_hw描述。

    struct clk_hw {
        struct clk_core *core;
        struct clk *clk;
        const struct clk_init_data *init;
    };
    
    struct clk_core {
        const char        *name;
        const struct clk_ops    *ops;
        struct clk_hw        *hw;
        struct module        *owner;
        struct clk_core        *parent;
        const char        **parent_names;
        struct clk_core        **parents;
        u8            num_parents;
        u8            new_parent_index;
        unsigned long        rate;
        unsigned long        req_rate;
        unsigned long        new_rate;
        struct clk_core        *new_parent;
        struct clk_core        *new_child;
        unsigned long        flags;
        bool            orphan;
        unsigned int        enable_count;
        unsigned int        prepare_count;
        unsigned long        min_rate;
        unsigned long        max_rate;
        unsigned long        accuracy;
        int            phase;
        struct hlist_head    children;
        struct hlist_node    child_node;
        struct hlist_head    clks;
        unsigned int        notifier_count;
    #ifdef CONFIG_DEBUG_FS
        struct dentry        *dentry;
        struct hlist_node    debug_node;
    #endif
        struct kref        ref;
    };
    struct clk_init_data {
        const char        *name;
        const struct clk_ops    *ops;
        const char        * const *parent_names;
        u8            num_parents;
        unsigned long        flags;
    };
    struct clk_ops { int (*prepare)(struct clk_hw *hw); void (*unprepare)(struct clk_hw *hw); int (*is_prepared)(struct clk_hw *hw); void (*unprepare_unused)(struct clk_hw *hw); int (*enable)(struct clk_hw *hw); void (*disable)(struct clk_hw *hw); int (*is_enabled)(struct clk_hw *hw); void (*disable_unused)(struct clk_hw *hw); unsigned long (*recalc_rate)(struct clk_hw *hw, unsigned long parent_rate); long (*round_rate)(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate); int (*determine_rate)(struct clk_hw *hw, struct clk_rate_request *req); int (*set_parent)(struct clk_hw *hw, u8 index); u8 (*get_parent)(struct clk_hw *hw); int (*set_rate)(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate); int (*set_rate_and_parent)(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate, u8 index); unsigned long (*recalc_accuracy)(struct clk_hw *hw, unsigned long parent_accuracy); int (*get_phase)(struct clk_hw *hw); int (*set_phase)(struct clk_hw *hw, int degrees); void (*init)(struct clk_hw *hw); int (*debug_init)(struct clk_hw *hw, struct dentry *dentry); };

    clk_register()将描述时钟的struct clk_hw注册,转化成strcut clk变量。

    但在实际使用中,对不同类型的时钟往往调用其对应的封装函数。

    对于上面提到的硬件在下面都能找到对应的注册函数,其中包括一个composite设备作为一个组合注册。

    struct clk *clk_register(struct device *dev, struct clk_hw *hw)
    
    int clk_hw_register(struct device *dev, struct clk_hw *hw)
    struct clk *clk_register_fixed_rate(struct device *dev, const char *name, const char *parent_name, unsigned long flags, unsigned long fixed_rate); struct clk *clk_register_gate(struct device *dev, const char *name, const char *parent_name, unsigned long flags, void __iomem *reg, u8 bit_idx, u8 clk_gate_flags, spinlock_t *lock); struct clk *clk_register_divider(struct device *dev, const char *name, const char *parent_name, unsigned long flags, void __iomem *reg, u8 shift, u8 width, u8 clk_divider_flags, spinlock_t *lock); struct clk *clk_register_mux(struct device *dev, const char *name, const char * const *parent_names, u8 num_parents, unsigned long flags, void __iomem *reg, u8 shift, u8 width, u8 clk_mux_flags, spinlock_t *lock); struct clk *clk_register_fixed_factor(struct device *dev, const char *name, const char *parent_name, unsigned long flags, unsigned int mult, unsigned int div); struct clk *clk_register_fractional_divider(struct device *dev, const char *name, const char *parent_name, unsigned long flags, void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth, u8 clk_divider_flags, spinlock_t *lock); struct clk *clk_register_composite(struct device *dev, const char *name, const char * const *parent_names, int num_parents, struct clk_hw *mux_hw, const struct clk_ops *mux_ops, struct clk_hw *rate_hw, const struct clk_ops *rate_ops, struct clk_hw *gate_hw, const struct clk_ops *gate_ops, unsigned long flags);

    最后调用of_clk_add_provider()将注册的时钟加入到OF框架中。

    int of_clk_add_provider(struct device_node *np,
                struct clk *(*clk_src_get)(struct of_phandle_args *args,
                               void *data),
                void *data);

    1.2 consumer使用时钟

    其他设备需要使用时钟,可以再驱动中后去时钟也可以在设备DTS中引用时钟。

    struct clk *clk_get(struct device *dev, const char *id);
    struct clk *devm_clk_get(struct device *dev, const char *id);
    int clk_enable(struct clk *clk);
    void clk_disable(struct clk *clk);
    unsigned long clk_get_rate(struct clk *clk);
    void clk_put(struct clk *clk);
    void devm_clk_put(struct device *dev, struct clk *clk);
    long clk_round_rate(struct clk *clk, unsigned long rate);
    int clk_set_rate(struct clk *clk, unsigned long rate);
    bool clk_has_parent(struct clk *clk, struct clk *parent);
    int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max);
    int clk_set_min_rate(struct clk *clk, unsigned long rate);
    int clk_set_max_rate(struct clk *clk, unsigned long rate);
    int clk_set_parent(struct clk *clk, struct clk *parent);
    struct clk *clk_get_parent(struct clk *clk);
    struct clk *clk_get_sys(const char *dev_id, const char *con_id);
    
    int clk_prepare(struct clk *clk);
    void clk_unprepare(struct clk *clk);
    static inline int clk_prepare_enable(struct clk *clk)
    static inline void clk_disable_unprepare(struct clk *clk)
    struct clk *of_clk_get(struct device_node *np, int index); struct clk *of_clk_get_by_name(struct device_node *np, const char *name); struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec);

    2. 如何实现一款芯片的时钟框架

    对一款芯片配置时钟框架,首先拿到时钟框架图,上面会有详细的Mux关系、是否有Divider、是否是Fixed Divider、是否有gate等等。

    将这些器件找到对应的Linux时钟框架抽象,将整张时钟框架图抽象成Linux时钟框架识别的属性结构。

    然后还需要每一个器件的寄存器解释。

    在有了这些准备工作之后,工作氛围两部分:编写器件抽象驱动,比如Fixed clock、Gate、Divider等;按照时钟框架图编写DTS文件,寄存器参照规格书,compatible和驱动对应。

    2.1 编写类型时钟驱动

    首先通过CLK_OF_DECLARE()将字符串和xx2000_divider_setup()进行关联,然后在xx2000_divider_setup进行时钟的注册。

    static void xx2000_divider_setup(struct device_node *node)
    {
        void __iomem *reg;
        struct resource res;
        struct clk *clk;
        unsigned int bit_shift = 0, bit_width = 0;
        const char *clk_name = NULL;
        const char *parent_name;
        int ret = 0;
    
        if(!node)
            return;
    
        reg = of_io_request_and_map(node, 0, of_node_full_name(node));-----------------------------------将寄存器映射,后续对divider的设置以及读取都需要此寄存器。
        if(IS_ERR(reg)) {
            pr_err("%s <%s> must have a reg property.
    ", __func__, node->name);
            return;
        }
    
        if(of_property_read_u32(node, "bit-shift", &bit_shift)) {----------------------------------------操作divider需要知道配置divider的位偏移及位宽。然后根据频率选择divider的值,设置到寄存器中。获取时钟频率也通过读取寄存器值进行计算。
            pr_err("%s <%s> must have a bit-shift property.
    ", __func__, node->name);
            goto err_unmap;
        }
        if(of_property_read_u32(node, "bit-width", &bit_width)) {
            pr_err("%s <%s> must have a bit-width property.
    ", __func__, node->name);
            goto err_unmap;
        }
    
        parent_name = of_clk_get_parent_name(node, 0);----------------------------------------------------获取父时钟名称。
        if(!parent_name)
        {
            pr_err("%s <%s> must have a parent.
    ", __func__, node->name);
            goto err_unmap;
        }
    
        of_property_read_string(node, "clock-output-names", &clk_name);
    
        clk = clk_register_divider(NULL, clk_name, parent_name, 0, reg, bit_shift, bit_width, 0, NULL);---注册divider时钟,必须要有的参数有reg、bit_shift、bit_width,以及本身的名称。
        if(IS_ERR(clk))
        {
            pr_err("%s Failed to register <%s>.
    ", __func__, node->name);
            goto err_unmap;
        }
    
        ret = of_clk_add_provider(node, of_clk_src_simple_get, clk);--------------------------------------将注册的时钟加入到OF框架。
        if(ret)
        {
            pr_err("%s Failed to add <%s>.
    ", __func__, node->name);
            goto err_unregister;
        }
    
        return;
        
        err_unregister:
            clk_unregister_divider(clk);
    
        err_unmap:
            iounmap(reg);
            of_address_to_resource(node, 0, &res);
            release_mem_region(res.start, resource_size(&res));
        return;
    }
    
    CLK_OF_DECLARE(xx2000_clk_divider, "xx2000,clk-divider", xx2000_divider_setup);

    2.2 编写DTS文件

    有了上面的时钟框架图、时钟寄存器规格书和驱动,就可以按部就班的按照时钟框架图一步一步编写DTS。

    • 编写fixed clock的晶振、PLL等;
    • 编写多路复用Mux和分频器Divider,需要配置寄存器以及寄存器的bit-shift和bit-width。

    具体的DTS配置,参考如下:

                cpu_core_clk: cpu-core-clk {---------------------------------cpu_core_clk是在其他设备中clocks指向的名称。
                    #clock-cells = <0>;--------------------------------------0表示只有一个输出,1表示多余一个输出。
                    compatible = "xx2000,clk-divider";-----------------------如果有特殊需求,还需要编写自己的驱动。这里通过此字符串进行匹配。
                    reg = <CPU_CLK_DIV 0x4>;---------------------------------配置此事中的寄存器地址以及大小。
                    bit-shift = <0>;-----------------------------------------对于divider类型需要知道配置bit在寄存器中的偏移以及bit位宽。
                    bit-width = <5>;
                    clocks = <&cpu_mux 0>;-----------------------------------clocks指向父时钟。
                    clock-output-names = "cpu_core_clk";---------------------本时钟输出名称,在consumer时钟中可以使用此名称来获得该时钟的struct clk结构体。
                };

     

    3. 对时钟框架进行验证

    3.1 clk_summary验证时钟树

    通过读取/sys/kernel/debug/clk/clk_summary信息,和时钟框图对照,可以验证DTS配置正确与否。

       clock                             enable  prepare_cnt        rate   accuracy   phase
    ---------------------------------------------------------------------------------------- ddr_pll                                  0            0  1200000000          0 0  
     nn_pll                                   0            0   750000000          0 0  
     video_pll                                0            0  1100000000          0 0  
        sdio0_mux                             0            0  1100000000          0 0  
           sdio0_cclk_divider                 0            0    39285715          0 0  
              sdio0_cclk                      0            0    39285715          0 0...
     cpu_pll                                  0            0  1000000000          0 0  
        cpu_mux                               0            0  1000000000          0 0  
           cpu_core_clk                       0            0  1000000000          0 0  
              cpu_bus_clk                     0            0   500000000          0 0  
                 cpu_apb_clk                  0            0   250000000          0 0  
                 ddr_cpu_port_clk             0            0   500000000          0 0  
     rtc_clk                                  0            0       32768          0 0  
        tsen_mux                              0            0       32768          0 0  
           tsen_clk                           0            0       32768          0 0  
     ref_clk                                  0            0    24000000          0 0  
        wdt_clk                               0            0    24000000          0 0  
        timer3_clk                            0            0    24000000          0 0  
        timer2_clk                            0            0    24000000          0 0  
        timer1_clk                            0            0    24000000          0 0  
        timer0_clk                            0            0    24000000          0 0  
        ref_clk_750_fixed_factor              0            0       32000          0 0  
           usb_suspend_clk                    0            0       32000          0 0  

    3.2 验证时钟实际输出

    在/sys/kernel/debug/clk目录下,每个时钟都有自己的目录。

    clk_debug_create_one()函数中,对divider和gate类型时钟创建相应的节点用于控制硬件。

     static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
     {
            struct dentry *d;
    @@ -2182,6 +2290,7 @@ static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
                    if (ret)
                            goto err_out;
            }
    +    xx2000_clk_create(core);
     
            ret = 0;
            goto out;

    下面根据struct clk_core所对应的struct clk_ops来判断时钟的类型,gate创建xx2000_gate,divider创建xx2000_rate节点。

    static ssize_t xx2000_gate_read(struct file *filp, char __user *buffer,
                        size_t count, loff_t *ppos)
    {
        struct clk_core *pdata = filp->private_data;
        unsigned int value;
        char tmp[32];
        size_t size;
    
        value = __clk_is_enabled(pdata->hw->clk);
        size = sprintf(tmp, "%u
    ", value);
        printk("%s value=%u
    ", __func__, value);
    
        return simple_read_from_buffer(buffer, count, ppos, tmp, size);
    }
    
    static ssize_t xx2000_gate_write(struct file *filp,
                         const char __user *buffer,
                         size_t count, loff_t *ppos)
    {
        struct clk_core *pdata = filp->private_data;
        unsigned int value;
        int ret = 0;
    
        ret = kstrtouint_from_user(buffer, count, 0, &value);
        if (ret)
            return -EFAULT;
    
        printk("%s name=%s value=%u
    ", __func__, pdata->name, value);
    
        if(value)
            clk_prepare_enable(pdata->hw->clk);
        else
            clk_disable_unprepare(pdata->hw->clk);
        return count;
    }
    
    static const struct file_operations xx2000_gate_ops = {
        .owner = THIS_MODULE,
        .open = simple_open,
        .read = xx2000_gate_read,
        .write = xx2000_gate_write,
        .release = single_release,
    };
    
    static ssize_t xx2000_rate_read(struct file *filp, char __user *buffer,
                        size_t count, loff_t *ppos)
    {
        struct clk_core *pdata = filp->private_data;
        unsigned long rate;
        char tmp[32];
        size_t size;
    
        rate = clk_get_rate(pdata->hw->clk);
        size = sprintf(tmp, "%lu
    ", rate);
        printk("%s value=%lu
    ", __func__, rate);
    
        return simple_read_from_buffer(buffer, count, ppos, tmp, size);
    }
    
    static ssize_t xx2000_rate_write(struct file *filp,
                         const char __user *buffer,
                         size_t count, loff_t *ppos)
    {
        struct clk_core *pdata = filp->private_data;
        unsigned int rate;
        int ret = 0;
    
        ret = kstrtouint_from_user(buffer, count, 0, &rate);
        if (ret)
            return -EFAULT;
    
        printk("%s value=%u
    ", __func__, rate);
    
        if(rate)
            clk_set_rate(pdata->hw->clk, rate);
        return count;
    }
    
    static const struct file_operations xx2000_rate_ops = {
        .owner = THIS_MODULE,
        .open = simple_open,
        .read = xx2000_rate_read,
        .write = xx2000_rate_write,
        .release = single_release,
    };
    
    void xx2000_clk_create(struct clk_core *core)
    {
        const struct clk_ops *clk_ops = core->ops;
    
        //printk("%s %s %p %p %p %p
    ", __func__, core->name ,clk_ops, &clk_gate_ops, &clk_mux_ops, &clk_divider_ops);
        if(clk_ops == &clk_gate_ops)
        {
            debugfs_create_file("xx2000_gate", S_IRUSR | S_IWUSR, core->dentry, core, &xx2000_gate_ops);
        }
        else if(clk_ops == &clk_mux_ops)
        {
    //        debugfs_create_file("xx2000_mux", S_IRUSR | S_IWUSR, core->dentry, core, &xx2000_mux_ops);
        }
        else if(clk_ops == &clk_divider_ops)
        {
            debugfs_create_file("xx2000_rate", S_IRUSR | S_IWUSR, core->dentry, core, &xx2000_rate_ops);
        }
    }

    选择合适的clk输出pin,对上面的不同时钟进行开关、频率选择。

    可以通过clk_summary查看结果;还可以通过测量pin输出波形验证结果是否正确。

    4. 小结

    Linux提供了良好的时钟框架,wowotech.net对其进行了详细的总结。

    在实际应用中,通过时钟框架图对时钟树进行抽象,结合时钟规格书配置时钟树;编写时钟驱动。

    然后查看clk_summary,并进行验证;最后在相应的设备驱动中使用时钟。

  • 相关阅读:
    JAVA中循环删除list中元素的方法总结
    弹力设计总结
    CPU飚高问题排查基本步骤
    缓存数据库更新策略
    .Module高内聚低耦合的思考
    javascript回调函数及推论
    Laravel Autoloader模块分析
    Laravel Event模块分析
    数据操作分层设计
    Discuzx2开发标准流程
  • 原文地址:https://www.cnblogs.com/arnoldlu/p/10307827.html
Copyright © 2011-2022 走看看