zoukankan      html  css  js  c++  java
  • warn_alloc():page allocation failure问题分析

    关键词:warn_alloc()、__GFP_XXX、order、CMA等等。

    在内存申请的时候经常会遇到类似“ xxx: page allocation failure: order:10...”类型的问题,这是warn_alloc()的输出。

    warn_alloc()被如下函数调用:__alloc_pages_slowpath()、__vmalloc_area_node()、__vmalloc_node_range

    下面分三部分了解这种问题的来龙去脉:

    • 什么情况会导致warn_alloc()?
    • warn_alloc()都做了哪些事情?
    • 结合实际问题分析问题原因。

    1.触发warn_alloc()情况

    要了什么情况下会导致warn_alloc(),就需要分析在何种情况下会被调用。

    __alloc_pages_slowpath()表示页面申请进入了slowpath,那相对就有fastpath。

    __alloc_pages_nodemask()中可知,这个fastpath就是get_page_from_freelist()。__alloc_pages_nodemask()是分配页面的后备选择。

    static inline struct page *
    __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
                            struct alloc_context *ac)
    {
        bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
        struct page *page = NULL;
        unsigned int alloc_flags;
        unsigned long did_some_progress;
        enum compact_priority compact_priority;
        enum compact_result compact_result;
        int compaction_retries;
        int no_progress_loops;
        unsigned long alloc_start = jiffies;
        unsigned int stall_timeout = 10 * HZ;
        unsigned int cpuset_mems_cookie;
    
        if (order >= MAX_ORDER) {
            WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
            return NULL;
        }
    
        if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
                    (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
            gfp_mask &= ~__GFP_ATOMIC;
    
    retry_cpuset:
        compaction_retries = 0;
        no_progress_loops = 0;
        compact_priority = DEF_COMPACT_PRIORITY;
        cpuset_mems_cookie = read_mems_allowed_begin();
    
        ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
                        ac->high_zoneidx, ac->nodemask);
        if (!ac->preferred_zoneref->zone)------------------------------------------------找不到合适的zone,进入nopage处理。
            goto nopage;
    
        alloc_flags = gfp_to_alloc_flags(gfp_mask);
    
        if (gfp_mask & __GFP_KSWAPD_RECLAIM)
            wake_all_kswapds(order, ac);
    
        page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
        if (page)
            goto got_pg;
    
        if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
            !gfp_pfmemalloc_allowed(gfp_mask)) {-----------------------------------------在定义__GFP_DIRECT_RECLAIM、__GFP_MEMALLOC并且order大于3,也即分配超过8页内存的时候。
            page = __alloc_pages_direct_compact(gfp_mask, order,
                            alloc_flags, ac,
                            INIT_COMPACT_PRIORITY,
                            &compact_result);---------------------------------------------页面较大情况下,走直接页面回收来获取内存。
            if (page)
                goto got_pg;
    
            if (gfp_mask & __GFP_NORETRY) {----------------------------------------------不做重试的情况。
    
                if (compact_result == COMPACT_DEFERRED)----------------------------------compaction不成功,进入nopage处理。
                    goto nopage;
    
                compact_priority = INIT_COMPACT_PRIORITY;
            }
        }
    
    retry:
        /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
        if (gfp_mask & __GFP_KSWAPD_RECLAIM)
            wake_all_kswapds(order, ac);-------------------------------------------------唤醒kswapd内核线程,让其处于工作状态。
    
        if (gfp_pfmemalloc_allowed(gfp_mask))
            alloc_flags = ALLOC_NO_WATERMARKS;
    
        if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
            ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
            ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
                        ac->high_zoneidx, ac->nodemask);
        }
    
        /* Attempt with potentially adjusted zonelist and alloc_flags */
        page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);-----------------申请内存分配,成功则返回struct page地址。
        if (page)
            goto got_pg;
    
        /* Caller is not willing to reclaim, we can't balance anything */
        if (!can_direct_reclaim) {-------------------------------------------------------既不能内存规整direct compact,也无法从freelist获取内存的情况,进入nopage流程。
    
            WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
            goto nopage;
        }
    
        /* Avoid recursion of direct reclaim */
        if (current->flags & PF_MEMALLOC) {
    
            if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
                cond_resched();
                goto retry;
            }
            goto nopage;
        }
    
        /* Avoid allocations with no watermarks from looping endlessly */
        if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
            goto nopage;
    
    
        /* Try direct reclaim and then allocating */
        page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
                                &did_some_progress);
        if (page)
            goto got_pg;
    
        /* Try direct compaction and then allocating */
        page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
                        compact_priority, &compact_result);
        if (page)
            goto got_pg;
    
        /* Do not loop if specifically requested */
        if (gfp_mask & __GFP_NORETRY)--------------------------------------------------------------强调不允许循环重试情况。
            goto nopage;
    
        /*
         * Do not retry costly high order allocations unless they are
         * __GFP_REPEAT
         */
        if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))-------------------------针对高order情况,并且不允许__GFP_REPEAT的情况,进入nopage流程。
            goto nopage;
    
        /* Make sure we know about allocations which stall for too long */
        if (time_after(jiffies, alloc_start + stall_timeout)) {------------------------------------内存分配持续时间超过stall_timeout,初始为10秒,后面以10秒递增报警。
            warn_alloc(gfp_mask,
                "page allocation stalls for %ums, order:%u",
                jiffies_to_msecs(jiffies-alloc_start), order);
            stall_timeout += 10 * HZ;
        }
    
        if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
                     did_some_progress > 0, &no_progress_loops))
            goto retry;
    
        if (did_some_progress > 0 &&
                should_compact_retry(ac, order, alloc_flags,
                    compact_result, &compact_priority,
                    &compaction_retries))
            goto retry;
    
        if (read_mems_allowed_retry(cpuset_mems_cookie))
            goto retry_cpuset;
    
        /* Reclaim has failed us, start killing things */
        page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);----------------------分配页面,并且判断是否需要启动OOM killer,did_some_progress会导致retry。如果order小于3则不会进入OOM。
        if (page)
            goto got_pg;
    
        /* Retry as long as the OOM killer is making progress */
        if (did_some_progress) {
            no_progress_loops = 0;
            goto retry;
        }
    
    nopage:
    
        if (read_mems_allowed_retry(cpuset_mems_cookie))
            goto retry_cpuset;----------------------------------------------------------------------进入retry_cpuset循环处理。
    
        warn_alloc(gfp_mask,
                "page allocation failure: order:%u", order);----------------------------------------无法满足分配order大小页面。
    got_pg:
        return page;
    }

    下面两个函数都是vmalloc相关,__vmalloc_area_node()在分配失败之后进入fail,调用warn_alloc()输出log。

    static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
                     pgprot_t prot, int node)
    {
        struct page **pages;
        unsigned int nr_pages, array_size, i;
        const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
        const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
    
        nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
        array_size = (nr_pages * sizeof(struct page *));
    
        area->nr_pages = nr_pages;
        /* Please note that the recursion is strictly bounded. */
        if (array_size > PAGE_SIZE) {
            pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
                    PAGE_KERNEL, node, area->caller);
        } else {
            pages = kmalloc_node(array_size, nested_gfp, node);
        }
        area->pages = pages;
        if (!area->pages) {
            remove_vm_area(area->addr);
            kfree(area);
            return NULL;
        }
    
        for (i = 0; i < area->nr_pages; i++) {
            struct page *page;
    
            if (node == NUMA_NO_NODE)
                page = alloc_page(alloc_mask);
            else
                page = alloc_pages_node(node, alloc_mask, 0);
    
            if (unlikely(!page)) {
                /* Successfully allocated i pages, free them in __vunmap() */
                area->nr_pages = i;
                goto fail;
            }
            area->pages[i] = page;
            if (gfpflags_allow_blocking(gfp_mask))
                cond_resched();
        }
    
        if (map_vm_area(area, prot, pages))
            goto fail;
        return area->addr;
    
    fail:
        warn_alloc(gfp_mask,
                  "vmalloc: allocation failure, allocated %ld of %ld bytes",
                  (area->nr_pages*PAGE_SIZE), area->size);
        vfree(area->addr);
        return NULL;
    }
    void *__vmalloc_node_range(unsigned long size, unsigned long align,
                unsigned long start, unsigned long end, gfp_t gfp_mask,
                pgprot_t prot, unsigned long vm_flags, int node,
                const void *caller)
    {
        struct vm_struct *area;
        void *addr;
        unsigned long real_size = size;
    
        size = PAGE_ALIGN(size);
        if (!size || (size >> PAGE_SHIFT) > totalram_pages)
            goto fail;
    
        area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
                    vm_flags, start, end, node, gfp_mask, caller);
        if (!area)
            goto fail;
    
        addr = __vmalloc_area_node(area, gfp_mask, prot, node);
        if (!addr)
            return NULL;
    
        clear_vm_uninitialized_flag(area);
    
        kmemleak_alloc(addr, real_size, 2, gfp_mask);
    
        return addr;
    
    fail:
        warn_alloc(gfp_mask,
                  "vmalloc: allocation failure: %lu bytes", real_size);
        return NULL;
    }

    2. warn_alloc()解析

    warn_alloc()首先显示相关进程和内存分配gfp_mask信息,然后打印栈信息,

    void warn_alloc(gfp_t gfp_mask, const char *fmt, ...)
    {
        unsigned int filter = SHOW_MEM_FILTER_NODES;
        struct va_format vaf;
        va_list args;
    
        if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
            debug_guardpage_minorder() > 0)
            return;
    
        if (!(gfp_mask & __GFP_NOMEMALLOC))
            if (test_thread_flag(TIF_MEMDIE) ||
                (current->flags & (PF_MEMALLOC | PF_EXITING)))
                filter &= ~SHOW_MEM_FILTER_NODES;
        if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
            filter &= ~SHOW_MEM_FILTER_NODES;
    
        pr_warn("%s: ", current->comm);------------------------------------显示对应进程名称。
    
        va_start(args, fmt);
        vaf.fmt = fmt;
        vaf.va = &args;
        pr_cont("%pV", &vaf);
        va_end(args);------------------------------------------------------显示warn_alloc()传入的参数。
    
        pr_cont(", mode:%#x(%pGg)
    ", gfp_mask, &gfp_mask);----------------显示gfp_mask。
    
        dump_stack();------------------------------------------------------显示栈信息。
        if (!should_suppress_show_mem())
            show_mem(filter);----------------------------------------------显示内存信息,这里是重点。
    }

    show_mem()显示详细的内存信息。

    void show_mem(unsigned int filter)
    {
        pg_data_t *pgdat;
        unsigned long total = 0, reserved = 0, highmem = 0;
    
        printk("Mem-Info:
    ");
        show_free_areas(filter);
    
        for_each_online_pgdat(pgdat) {
            unsigned long flags;
            int zoneid;
    
            pgdat_resize_lock(pgdat, &flags);
            for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
                struct zone *zone = &pgdat->node_zones[zoneid];
                if (!populated_zone(zone))
                    continue;
    
                total += zone->present_pages;
                reserved += zone->present_pages - zone->managed_pages;
    
                if (is_highmem_idx(zoneid))
                    highmem += zone->present_pages;
            }
            pgdat_resize_unlock(pgdat, &flags);
        }
    
        printk("%lu pages RAM
    ", total);-------------------------------整个平台的页面统计信息:所有页面数、reserved、cma等等。
        printk("%lu pages HighMem/MovableOnly
    ", highmem);
        printk("%lu pages reserved
    ", reserved);
    #ifdef CONFIG_CMA
        printk("%lu pages cma reserved
    ", totalcma_pages);
    #endif
    #ifdef CONFIG_QUICKLIST
        printk("%lu pages in pagetable cache
    ",
            quicklist_total_size());
    #endif
    #ifdef CONFIG_MEMORY_FAILURE
        printk("%lu pages hwpoisoned
    ", atomic_long_read(&num_poisoned_pages));
    #endif
    }

    show_free_areas()从所有node、不同node、不同zone、同一zone下不同order分别显示空闲页面信息。

    void show_free_areas(unsigned int filter)
    {
        unsigned long free_pcp = 0;
        int cpu;
        struct zone *zone;
        pg_data_t *pgdat;
    
        for_each_populated_zone(zone) {
            if (skip_free_areas_node(filter, zone_to_nid(zone)))
                continue;
    
            for_each_online_cpu(cpu)
                free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
        }
    
        printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu
    "-----------------显示所有node的统计信息。
            " active_file:%lu inactive_file:%lu isolated_file:%lu
    "
            " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu
    "
            " slab_reclaimable:%lu slab_unreclaimable:%lu
    "
            " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu
    "
            " free:%lu free_pcp:%lu free_cma:%lu
    ",
            global_node_page_state(NR_ACTIVE_ANON),
            global_node_page_state(NR_INACTIVE_ANON),
            global_node_page_state(NR_ISOLATED_ANON),
            global_node_page_state(NR_ACTIVE_FILE),
            global_node_page_state(NR_INACTIVE_FILE),
            global_node_page_state(NR_ISOLATED_FILE),
            global_node_page_state(NR_UNEVICTABLE),
            global_node_page_state(NR_FILE_DIRTY),
            global_node_page_state(NR_WRITEBACK),
            global_node_page_state(NR_UNSTABLE_NFS),
            global_page_state(NR_SLAB_RECLAIMABLE),
            global_page_state(NR_SLAB_UNRECLAIMABLE),
            global_node_page_state(NR_FILE_MAPPED),
            global_node_page_state(NR_SHMEM),
            global_page_state(NR_PAGETABLE),
            global_page_state(NR_BOUNCE),
            global_page_state(NR_FREE_PAGES),
            free_pcp,
            global_page_state(NR_FREE_CMA_PAGES));
    
        for_each_online_pgdat(pgdat) {-------------------------------------------------分别显示不同node的统计信息。
            printk("Node %d"
                " active_anon:%lukB"
                " inactive_anon:%lukB"
                " active_file:%lukB"
                " inactive_file:%lukB"
                " unevictable:%lukB"
                " isolated(anon):%lukB"
                " isolated(file):%lukB"
                " mapped:%lukB"
                " dirty:%lukB"
                " writeback:%lukB"
                " shmem:%lukB"
    #ifdef CONFIG_TRANSPARENT_HUGEPAGE
                " shmem_thp: %lukB"
                " shmem_pmdmapped: %lukB"
                " anon_thp: %lukB"
    #endif
                " writeback_tmp:%lukB"
                " unstable:%lukB"
                " pages_scanned:%lu"
                " all_unreclaimable? %s"
                "
    ",
                pgdat->node_id,
                K(node_page_state(pgdat, NR_ACTIVE_ANON)),
                K(node_page_state(pgdat, NR_INACTIVE_ANON)),
                K(node_page_state(pgdat, NR_ACTIVE_FILE)),
                K(node_page_state(pgdat, NR_INACTIVE_FILE)),
                K(node_page_state(pgdat, NR_UNEVICTABLE)),
                K(node_page_state(pgdat, NR_ISOLATED_ANON)),
                K(node_page_state(pgdat, NR_ISOLATED_FILE)),
                K(node_page_state(pgdat, NR_FILE_MAPPED)),
                K(node_page_state(pgdat, NR_FILE_DIRTY)),
                K(node_page_state(pgdat, NR_WRITEBACK)),
                K(node_page_state(pgdat, NR_SHMEM)),
    #ifdef CONFIG_TRANSPARENT_HUGEPAGE
                K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
                K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
                        * HPAGE_PMD_NR),
                K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
    #endif
                K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
                K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
                node_page_state(pgdat, NR_PAGES_SCANNED),
                !pgdat_reclaimable(pgdat) ? "yes" : "no");
        }
    
        for_each_populated_zone(zone) {----------------------------------------------分别显示所有zone的统计信息。
            int i;
    
            if (skip_free_areas_node(filter, zone_to_nid(zone)))
                continue;
    
            free_pcp = 0;
            for_each_online_cpu(cpu)
                free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
    
            show_node(zone);
            printk(KERN_CONT
                "%s"
                " free:%lukB"
                " min:%lukB"
                " low:%lukB"
                " high:%lukB"
                " active_anon:%lukB"
                " inactive_anon:%lukB"
                " active_file:%lukB"
                " inactive_file:%lukB"
                " unevictable:%lukB"
                " writepending:%lukB"
                " present:%lukB"
                " managed:%lukB"
                " mlocked:%lukB"
                " slab_reclaimable:%lukB"
                " slab_unreclaimable:%lukB"
                " kernel_stack:%lukB"
                " pagetables:%lukB"
                " bounce:%lukB"
                " free_pcp:%lukB"
                " local_pcp:%ukB"
                " free_cma:%lukB"
                "
    ",
                zone->name,
                K(zone_page_state(zone, NR_FREE_PAGES)),
                K(min_wmark_pages(zone)),
                K(low_wmark_pages(zone)),
                K(high_wmark_pages(zone)),
                K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
                K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
                K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
                K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
                K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
                K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
                K(zone->present_pages),
                K(zone->managed_pages),
                K(zone_page_state(zone, NR_MLOCK)),
                K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
                K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
                zone_page_state(zone, NR_KERNEL_STACK_KB),
                K(zone_page_state(zone, NR_PAGETABLE)),
                K(zone_page_state(zone, NR_BOUNCE)),
                K(free_pcp),
                K(this_cpu_read(zone->pageset->pcp.count)),
                K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
            printk("lowmem_reserve[]:");
            for (i = 0; i < MAX_NR_ZONES; i++)
                printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
            printk(KERN_CONT "
    ");
        }
    
        for_each_populated_zone(zone) {-------------------------------------------显示所有zone下不同order空闲数目统计信息。
            unsigned int order;
            unsigned long nr[MAX_ORDER], flags, total = 0;
            unsigned char types[MAX_ORDER];
    
            if (skip_free_areas_node(filter, zone_to_nid(zone)))
                continue;
            show_node(zone);
            printk(KERN_CONT "%s: ", zone->name);
    
            spin_lock_irqsave(&zone->lock, flags);
            for (order = 0; order < MAX_ORDER; order++) {-------------------------遍历当前zone的不同order,不同order区域数目存在nr[]中,total是总的页面数目。
                struct free_area *area = &zone->free_area[order];
                int type;
    
                nr[order] = area->nr_free;
                total += nr[order] << order;
    
                types[order] = 0;
                for (type = 0; type < MIGRATE_TYPES; type++) {
                    if (!list_empty(&area->free_list[type]))
                        types[order] |= 1 << type;--------------------------------记录order区域中页面类型。
                }
            }
            spin_unlock_irqrestore(&zone->lock, flags);
            for (order = 0; order < MAX_ORDER; order++) {
                printk(KERN_CONT "%lu*%lukB ",
                       nr[order], K(1UL) << order);-------------------------------输出不同order区域数量和区域大小。
                if (nr[order])
                    show_migration_types(types[order]);---------------------------输出页面类型。
            }
            printk(KERN_CONT "= %lukB
    ", K(total));------------------------------显示总大小。
        }
    
        hugetlb_show_meminfo();---------------------------------------------------显示huge page统计信息。
    
        printk("%ld total pagecache pages
    ", global_node_page_state(NR_FILE_PAGES));---总的文件缓存页面数量。
    
        show_swap_cache_info();----------------------------------------------------显示swap cache统计信息。
    }

    不同的页面有不同的属性,在warn_alloc()输出的字母对应了页面的属性。主要有M、U、E、C。

    static void show_migration_types(unsigned char type)
    {
        static const char types[MIGRATE_TYPES] = {
            [MIGRATE_UNMOVABLE]    = 'U',--------------------------不可移动。
            [MIGRATE_MOVABLE]    = 'M',----------------------------可移动。
            [MIGRATE_RECLAIMABLE]    = 'E',------------------------可回收。
            [MIGRATE_HIGHATOMIC]    = 'H',-------------------------等同于MIGRATE_PCPTYPES。
    #ifdef CONFIG_CMA
            [MIGRATE_CMA]        = 'C',----------------------------CMA区域页面。
    #endif
    #ifdef CONFIG_MEMORY_ISOLATION
            [MIGRATE_ISOLATE]    = 'I',
    #endif
        };
        char tmp[MIGRATE_TYPES + 1];
        char *p = tmp;
        int i;
    
        for (i = 0; i < MIGRATE_TYPES; i++) {
            if (type & (1 << i))
                *p++ = types[i];
        }
    
        *p = '';
        printk(KERN_CONT "(%s) ", tmp);
    }

    经过上面的分析,基本上明白每一行的输出的来源。具体每个字段表示的内存含义,还需要结合代码阅读。

    3. 实例解析

    下面结合实际问题log输出来分析问题,进而解决问题。

    表示进程xxxx在分配order为10个连续物理页面时失败,mode表示内存分配的页模式,具体在include/linux/gfp.h中定义。

    内存碎片会导致page分配失败,即使还有很多空闲page。当order=0时,表示系统当前已经完全OOM。

    [ 2161.623563] xxxx: page allocation failure: order:10, mode:0x2084020(GFP_ATOMIC|__GFP_COMP)-----------------warn_alloc(),从这里可以知道是哪个进程页面分配失败,并且有对应的gfp_mask。
    [ 2161.632085] CPU: 0 PID: 179 Comm: AiApp Not tainted 4.9.56 #53---------------------------------------------dump_stack(),栈信息指出了更详细的调用路径。
    [ 2161.637947] 
    Call Trace:
    [<802f63f2>] dump_stack+0x1e/0x3c
    [<800f6cf4>] warn_alloc+0x100/0x148
    [<800f709c>] __alloc_pages_nodemask+0x2bc/0xb5c
    [<801120fe>] kmalloc_order+0x26/0x48
    [<80112158>] kmalloc_order_trace+0x38/0x98
    [<8012c5d8>] __kmalloc+0xf4/0x12c
    [<8048ac78>] alloc_ep_req+0x5c/0x98
    [<8048f232>] source_sink_recv+0x2a/0xe0
    [<8048f35e>] usb_sourcesink_bulk_read+0x76/0x1c8
    [<8048f770>] usb_sourcesink_read+0xfc/0x2c8
    [<80134d58>] __vfs_read+0x30/0x108
    [<80135c14>] vfs_read+0x94/0x128
    [<80136d12>] SyS_read+0x52/0xd4
    [<8004a246>] csky_systemcall+0x96/0xe0
    [ 2161.689204] Mem-Info:--------------------------------------------------------------show_mem()
    [ 2161.691518] active_anon:3268 inactive_anon:2 isolated_anon:0-----------------------所有node统计信息。
    [ 2161.691518]  active_file:1271 inactive_file:89286 isolated_file:0
    [ 2161.691518]  unevictable:0 dirty:343 writeback:0 unstable:0
    [ 2161.691518]  slab_reclaimable:2019 slab_unreclaimable:644
    [ 2161.691518]  mapped:4282 shmem:4 pagetables:59 bounce:0
    [ 2161.691518]  free:62086 free_pcp:199 free_cma:60234
    --------------------------------------------------------------------------------------只有一个node,输出node 0统计信息。 [ 2161.724334] Node 0 active_anon:13072kB inactive_anon:8kB active_file:5084kB inactive_file:357144kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:17128kB dirty:1372kB writeback:0kB shmem:16kB writeback_tmp:0kB unstable:0kB pages_scanned:0 all_unreclaimable? no
    --------------------------------------------------------------------------------------输出Normal zone统计信息。 [
    2161.748626] Normal free:248344kB min:2444kB low:3052kB high:3660kB active_anon:13072kB inactive_anon:8kB active_file:5084kB inactive_file:357144kB unevictable:0kB writepending:1372kB present:1048572kB managed:734568kB mlocked:0kB slab_reclaimable:8076kB slab_unreclaimable:2576kB kernel_stack:608kB pagetables:236kB bounce:0kB free_pcp:796kB local_pcp:796kB free_cma:240936kB [ 2161.781670] lowmem_reserve[]: 0 0 0
    ---------------------------------------------------------------------------------------输出Normal zone下不同order的空闲情况,包括其中页面属性。 [ 2161.785225] Normal: 4*4kB (UEC) 3*8kB (EC) 3*16kB (UEC) 2*32kB (UE) 2*64kB (UE) 2*128kB (UE) 2*256kB (EC) 1*512kB (E) 3*1024kB (UEC) 3*2048kB (UEC) 58*4096kB (C) = 248344kB 90573 total pagecache pages
    ---------------------------------------------------------------------------------------整个平台页面统计信息。 [
    2161.803526] 262143 pages RAM [ 2161.806410] 0 pages HighMem/MovableOnly [ 2161.810264] 78501 pages reserved [ 2161.813509] 90112 pages cma reserved

    从stack信息可以得知,alloc_ep_req()是分配内存的起点。

    struct usb_request *alloc_ep_req(struct usb_ep *ep, size_t len)
    {
        struct usb_request      *req;
    
        req = usb_ep_alloc_request(ep, GFP_ATOMIC);
        if (req) {
            req->length = usb_endpoint_dir_out(ep->desc) ?
                usb_ep_align(ep, len) : len;
            req->buf = kmalloc(req->length, GFP_ATOMIC);
            if (!req->buf) {
                usb_ep_free_request(ep, req);
                req = NULL;
            }
        }
        return req;
    }

    3.1 GFP_ATOMIC和__GFP_COMP:页面分配标志

    从代码可知此时gfp_mask为GFP_ATOMIC,这种情况是不允许__GFP_DIRECT_RECLAIM页面直接回收的。

    #define GFP_ATOMIC    (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)
    #define __GFP_HIGH    ((__force gfp_t)___GFP_HIGH)----------------------------------------------表示更高优先级。
    #define __GFP_ATOMIC    ((__force gfp_t)___GFP_ATOMIC)------------------------------------------表示调用者不可以回收页面或者睡眠,并且是高优先级。典型的应用是中断处理中。
    #define __GFP_KSWAPD_RECLAIM    ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */----在内存分配的时候,主动唤醒kswapd线程。
    #define __GFP_COMP    ((__force gfp_t)___GFP_COMP)----------------------------------------------复合页标志位,表示将两个或多个也看成一个页面。

    GFP位掩码定义如下:

    #define ___GFP_DMA        0x01u
    #define ___GFP_HIGHMEM        0x02u
    #define ___GFP_DMA32        0x04u
    #define ___GFP_MOVABLE        0x08u
    #define ___GFP_RECLAIMABLE    0x10u
    #define ___GFP_HIGH        0x20u
    #define ___GFP_IO        0x40u
    #define ___GFP_FS        0x80u
    #define ___GFP_COLD        0x100u
    #define ___GFP_NOWARN        0x200u
    #define ___GFP_REPEAT        0x400u
    #define ___GFP_NOFAIL        0x800u
    #define ___GFP_NORETRY        0x1000u
    #define ___GFP_MEMALLOC        0x2000u
    #define ___GFP_COMP        0x4000u
    #define ___GFP_ZERO        0x8000u
    #define ___GFP_NOMEMALLOC    0x10000u
    #define ___GFP_HARDWALL        0x20000u
    #define ___GFP_THISNODE        0x40000u
    #define ___GFP_ATOMIC        0x80000u
    #define ___GFP_ACCOUNT        0x100000u
    #define ___GFP_NOTRACK        0x200000u
    #define ___GFP_DIRECT_RECLAIM    0x400000u
    #define ___GFP_OTHER_NODE    0x800000u
    #define ___GFP_WRITE        0x1000000u
    #define ___GFP_KSWAPD_RECLAIM    0x2000000u

    3.2 gfp和migrate转换,进而alloc_flags:为什么不能使用CMA区域?

    gfp_mask决定了申请页面的migratetype,然后在CMA存在的情况下根据migratetype决定是否可用CMA区域。

    static inline unsigned int
    gfp_to_alloc_flags(gfp_t gfp_mask)
    {
        unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
    
        /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
        BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
    
        alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);------------------------------__GFP_HIGH到ALLOC_HIGH转换。
    
        if (gfp_mask & __GFP_ATOMIC) {
    
            if (!(gfp_mask & __GFP_NOMEMALLOC))
                alloc_flags |= ALLOC_HARDER;
    
            alloc_flags &= ~ALLOC_CPUSET;
        } else if (unlikely(rt_task(current)) && !in_interrupt())
            alloc_flags |= ALLOC_HARDER;
    
    #ifdef CONFIG_CMA
        if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)---------------------------将gfp_mask转换到migratetype,判断是否是MIGRATE_MOVABLE。如果是,则可以在CMA去榆中分配。也就是说必须gfp_flags中包含__GFP_MOVABLE才可以在CMA中分配。
            alloc_flags |= ALLOC_CMA;
    #endif
        return alloc_flags;
    }
    
    #define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)------------------------------___GFP_MOVABLE为0x08,___GFP_RECLAIMABLE为0x10。
    #define GFP_MOVABLE_SHIFT 3
    
    static inline int gfpflags_to_migratetype(const gfp_t gfp_flags)
    {
        VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
        BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE);
        BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE);
    
        if (unlikely(page_group_by_mobility_disabled))
            return MIGRATE_UNMOVABLE;
    
        /* Group based on mobility */
        return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT;--------------------------这里面只会与__GFP_RECLAIMABLE|__GFP_MOVABLE,然后右移3bit,就将___GFP_MOVABLE转换到MIGRATE_MOVABLE,将__GFP_RECLAIMABLE转换到MIGRATE_RECLAIMABLE。
    }

    由于此次申请的gfp_mask可知没有___GFP_MOVABLE,所以alloc_flags不会包括ALLOC_CMA。反之,如果要复用CMA进行内存申请,需要在gfp_mask中包括__GFP_MOVABLE。

    从Normal区域空闲页面可以看出,有58个4MB空闲,但是属于CMA区域。所以申请不成功。

    3.3 问题的根源

    结合warn_alloc()和实例归纳如下:

    1. 虽然存在很多空闲内存,但是alloc_ep_req()无法使用

    由于alloc_ep_req()申请内存的gfp_mask为GFP_ATOMIC|__GFP_COMP。

    由于不具备__GFP_MOVABLE,所以即使存在很多空闲4MB连续页面,也无法使用,因为这些4MB页面都是CMA的。

    [ 2161.785225] Normal: 4*4kB (UEC) 3*8kB (EC) 3*16kB (UEC) 2*32kB (UE) 2*64kB (UE) 2*128kB (UE) 2*256kB (EC) 1*512kB (E) 3*1024kB (UEC) 3*2048kB (UEC) 58*4096kB (C) = 248344kB-----光4MB CMA就达到了232M,其他只有16MB。

    2. 为什么剩下的内存绝大部分是CMA?

    从Normal区域空闲页面情况看,绝大部分都是CMA的。但是初始化的时候存在很多其他类型的页面。

    通过cat /proc/pagetypeinfo查看前后对比,可以发现Movable类型的页面基本被申请完。

    所以这里怀疑是内存泄漏,通过下面脚本跟踪MemFree。

    while true; do cat /proc/meminfo | grep MemFree; sleep 10; done

    发现内存在不停的下降,达到260M左右的时候出现warn_alloc()。

    所以问题的根源在内存泄漏。

    3. 如何降低内存碎片?

    对内存碎片,可以提供页面规整来解决。请参考《Linux内存管理 (16)内存规整

    4. 调整/proc/sys/vm/min_free_kbytes

  • 相关阅读:
    jenkins连接Publish over SSH失败系列(一)Failed to add SSH key
    jenkins连接Publish over SSH失败系列(一)Failed to change to remote directory
    【2021-07-04】人生十三信条
    【2021-07-03】人生十三信条
    【2021-07-02】发现了成长一丝丝的痕迹
    【2021-07-01】回顾自己过往那点压力
    【2021-06-30】我现在连做梦都纯洁了
    【2021-06-29】做事情时老让自己分心
    【2021-06-28】责任要匹配得上对应的压力
    【2021-06-27】人生十三信条
  • 原文地址:https://www.cnblogs.com/arnoldlu/p/10691034.html
Copyright © 2011-2022 走看看