zoukankan      html  css  js  c++  java
  • CodeForces-1213D Equalizing by Division

    Description

    You are given an array a consisting of n integers. In one move you can choose any aiai and divide it by 2 rounding down (in other words, in one move you can set (a_i=lfloor frac{a_i}{2} floor)).

    You can perform such an operation any (possibly, zero) number of times with any aiai.

    Your task is to calculate the minimum possible number of operations required to obtain at least kk equal numbers in the array.

    Don't forget that it is possible to have ai=0ai=0 after some operations, thus the answer always exists.

    Input

    The first line of the input contains two integers nn and kk (1≤k≤n≤2⋅1051≤k≤n≤2⋅105) — the number of elements in the array and the number of equal numbers required.

    The second line of the input contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤2⋅1051≤ai≤2⋅105), where aiai is the ii-th element of aa.

    Output

    Print one integer — the minimum possible number of operations required to obtain at least kk equal numbers in the array.

    Examples

    input

    5 3
    1 2 2 4 5
    

    output

    1
    

    input

    5 3
    1 2 3 4 5
    

    output

    2
    

    input

    5 3
    1 2 3 3 3
    

    output

    0
    

    题解

    直接暴力分解。

    排序一遍之后统计每个数出现了多少次,出现k次的时候更新一遍答案即可,打div3的时候硬是没想到,基础过差

    #include <bits/stdc++.h>
    using namespace std;
    const int N = 2e5 + 50;
    int cnt[N];
    int num[N];
    int a[N];
    int main() {
        int n, k;
        scanf("%d%d", &n, &k);
        for (int i = 1; i <= n; i++) {
            scanf("%d", &a[i]);
        }
        sort(a + 1, a + n + 1);
        int res = 1e9;
        for (int i = 1; i <= n; i++) {
            int tmp = 0;
            while (a[i]) {
                cnt[a[i]]++;
                num[a[i]] += tmp;
                if (cnt[a[i]] == k) {
                    res = min(res, num[a[i]]);
                }
                tmp++; a[i] /= 2;
            }
        }
        printf("%d
    ", res);
        return 0;
    }
    
  • 相关阅读:
    按钮UIButton内图片和文字位置的设置(两种方式)
    关于Xcode上的Other linker flags基本介绍
    GCD定时器
    线程间的通信(3种方式)
    scrollView中内部控件的悬停
    十七:字符串文件的读写
    十六:NSString的创建以及相关细节
    十五:NSValue
    react生命周期遇到的问题
    笔记----深入浅出《React和Redux》第四章
  • 原文地址:https://www.cnblogs.com/artoriax/p/11456111.html
Copyright © 2011-2022 走看看